
 

 

Abstract: 
Attempts to determine the factors that influence an individual’s decision to visit a lake are 

of increasing importance as more detailed statistics are collected for a large number of lakes 
across the United States. The present research seeks to use the recently compiled LAGOS 
dataset to create a functional model lake visitation, with a special attention paid to water clarity 
and the number of lakes nearby a given lake. This modeling found that both clarity and nearby 
lakes were significant predictors in determining whether a given lake is visited, as well as being 
significant factors in estimating total lake visitation. In addition, three models of water clarity 
were constructed with a focus placed on lake chemistry. The first focused directly on modeling 
lake clarity, using a linear mixed effects model to account for multiple measurements taken at a 
single lake. This model found significant negative effects for chlorophyll and phosphorus, as well 
as an effect for region in the US. The second model sought to determine factors that can be 
used to predict eutrophic status in 5 years for a given lake. This model found significant 
negative effects for initial water clarity, and positive effects for chlorophyll change and 
phosphorus change. The last model attempts to determine what features of a lake can serve as 
predictors as to whether or not the lake is measured for clarity. This model found that region of 
the United States and population surrounding the lake were significant predictors.    
 
1. Introduction: 
 Lakes, rivers, and other publicly available bodies of water are important staples of 
society for many reasons. These water features present many opportunities for recreation, and 
also can be used as indicators of the health of the surrounding region. Despite these benefits, it 
is difficult to quantify the overall value that lakes provide. Recently, attempts have been made to 
extensively gather information about lakes across the United States in order to analyze various 
facets of lake value. One such initiative, the CSI-Limnology Project funded by the National 
Sanitation Foundation, have created the comprehensive LAGOS dataset on 141,271 lakes 
spanning 17 different states across the Midwestern and Northeastern United States1. The 
present research uses the LAGOS data to model two main indicators of lake value: visitation 
and water clarity. 
 Lake visitation is one of the more apparent determinants of lake value, because it 
directly measures the public valuation of a lake and can be translated into monetary benefit. On 
the surface, lake visitation seems rather easy to calculate. One possible approach is to conduct 
surveys at various lakes in order to physically count the number of visitors and also to determine 
factors that influence an individual’s decision to visit the lake. However, there are several 
immediate problems with survey data. The first major issue is that surveys are difficult to 
administer from a resource perspective. Data must be physically acquired which would 
necessitate a researcher being at the lake in person to collect the data. Because of this, 
decisions must be made as to which lakes will be surveyed, which makes data privy to selection 
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biases. Lakes that experience greater degrees of visitation would be more likely to be surveyed, 
which may affect survey results.  
 Recent research has attempted to ameliorate these issues with surveys by using data 
collected from social media. Keeler, et. al.2 used a measure of lake visitation known as photo-
user-days (PUD). PUD data draws on geotagged photos shared to the social media website 
Flickr. When a person takes any number of photos at a given lake on one day, that is one 
photo-user-day. Comparison between PUD data and recorded survey data for lakes in Iowa and 
Minnesota found that PUD is a good measure for lake visitation (Wood, et. al., 2013)3. This 
research uses PUD data collected for 51,107 lakes in the LAGOS dataset in order to determine 
what factors of a lake affect the probability that a particular lake is visited, as well as which lake 
features influence total visitation to the lake. The two main variables of interest are water clarity 
and the number of nearby lakes. Water clarity is the most notable feature of a lake, and can 
serve as an indicator of any immediate risks recreation at a particular lake might possess. The 
interest in nearby lakes is in determining whether people living in regions that are densely 
populated with lakes have different preferences than individuals in lake scarce regions who may 
not have as many options for lake recreation. One hypothesis is that people with a large number 
of nearby lakes would be more selective in the lakes they choose to visit. A consequence of this 
would be that preference of water clarity would be a more defining factor in lake dense regions, 
where recreational users have a wider selection of lakes to choose from. 
 The second metric for lake value this study seeks to evaluate is the clarity of the water. 
The LAGOS data uses secchi depth, the depth at which a black and white secchi disk cannot be 
seen when submerged in water, as a metric of clarity. In order to parse the various factors that 
influence water clarity, this research attempts to use data from the LAGOS dataset to model the 
various elements of a lake that can alter the clarity of the lake’s water. The most widely studied 
factor of lake clarity is the chemistry of the water. Often, the presence of chemicals in the water 
can serve as indicators of potential pollution that has occurred. This study considers how the 
presence of various chemicals affects water clarity, after accounting for a variety of other factors 
including lake features and usage of the area surrounding the lake.  
 One manner of evaluating water clarity is to identify lakes that are classified as 
eutrophic. Eutrophic lakes are those that have a clarity of less than 1.83 meters (approx. 6 feet). 
The current study seeks to determine what factors influence a change in eutrophic status. As 
with the overall clarity model, our main variables of interest are the change in chemicals present 
in the lake.  
 A possible issue with this clarity data is the somewhat sporadic nature of the taken 
measurements. Many of the lakes do not have a recorded clarity measurement, while some 
lakes are measured many times each month. It is possible that there are qualitative differences 
between lakes that are measured and lakes that are not. The present research looks to 
determine these differences by modeling factors of a lake that can be used to predict whether or 
not a lake’s clarity has been measured. Significant differences in measured lakes as compared 
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to non-measured lakes may affect the ability of models that rely solely on observed clarity 
measurements to impute any missing clarity values. 
 
2. Data: 
 Our primary index of lakes for analysis was lagoslakes_10400, which contained data on  
141,271 lakes spanning 17 different states. This dataset possessed information for each lake 
such as lake area and perimeter, total number and area of upstream lakes, maximum depth, 
latitude and longitude, and location statistics such as state name, HUC4, and HUC12. Using the 
HUC4, an agricultural region was determined for each lake4. Low Agriculture is defined as the 
region where agricultural land usage is less than 10%. Lakes with HUC4 of 1,2,3,4,6,7,8,9,10, 
and 11 comprise this region. High Agriculture is defined as the region where agricultural land 
usage is greater than 75%. Lakes with HUC4 of 34, 50, 53, 56, 57, 61, and 63 comprise this 
region.     

Lake visitation data was taken from lagos_osm_flickrpud_051817, which provides us 
with the information of total PUD, summer PUD, and lake amenities such as boat launch, toilets, 
hotels, marinas, bbqs, beaches, and shelters. Amenities data was obtained on 10/8/2016 using 
OpenStreetMap. Total PUD was calculated by taking the average yearly PUD for each lake from 
2005 to 2014. Summer PUD is restricted to photo-user-days that occurred between June 15 and 
September 15 in the same years.  

Population statistics and demographics were taken from HUC12pop. These data 
included total population, population living below the poverty line, population with at least a 
bachelor’s degree, mean/median income, total households, Hispanic population, non-Hispanic 
white population, non-Hispanic black population, and median age. We calculated population 
percentages for population with a bachelor’s degree, poor population, Hispanic population, 
white population, and black population by dividing the individual population statistic by the total 
population for the specific HUC12 region.Some HUC12s had multiple measurements in this 
dataset. To account for this, values for those particular HUC12s were averaged across all 
measurements.  

Chemical and clarity measurements were collected from lagos_epi_nutr_10541. 
Chemistry data was selected based on chemicals that had more than 40,000 observations, 
which were chlorophyll (chla), phosphorus (tp), ammonium (nh4), nitrogen (tkn), and nitrogen 
oxide (no2no3). Clarity was measured in terms of secchi depth. 

Surrounding land usage statistics were taken from lakes4ha_buffer500m_lulc. These 
data describe the categorization of land cover in a 500 meter buffer around the lake. The 
categories reported in this data set are Canopy, Open Water, Low Intensity Residential, Medium 
Intensity Residential, High Intensity Residential, Commercial/Industrial/Transportation, Barren 
(Rock/Sand/Clay), Quarries/Strip Mines/Gravel Pits, Transitional (Barren), Deciduous Forest, 
Evergreen Forest, Mixed Forest, Scrub/Shrub, Orchards/Vineyards/Other, 
Grasslands/Herbaceous, Pasture/Hay, Raw/Crops, Small Grains, Cultivated Crops, 
Urban/Recreational Grasses, Woody Wetlands, and Emergent Herbaceous Wetlands. The land 
usage statistics were reported for each of the years 1992, 2001, 2006, and 2011.    
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3. Predicting Lake Visitation 
 
3.1 Data 

Lake visitation was measured in the form of Photo-User-Days (PUD) taken during the 
summer (June 15th to September 15th) during the period between 2005 and 2014. In order to 
retain a similar time frame for all variables, clarity measurements were restricted to this summer 
period from 2005 to 2014 as well. We used the average clarity measurement for each lake over 
this time period in our model. Additionally, surrounding land usage measurements were 
averaged for the years 2001, 2006, and 2011.  

Lake amenities (hotels, beaches, boat launches, marinas, bbqs, toilets, and shelters) 
were coded as binary indicators, with “1” denoting lakes that possessed any number of a 
particular feature and “0” denoting lakes without the feature.  

A “nearby lakes” statistic was calculated for all lakes in our dataset by applying an 80 km 
buffer around the lake and determining the number of lakes that fall within the buffer area. 
Distances were calculated by applying a Haversine transformation to the latitude and longitude 
data for each lake. Eighty km was chosen as the size for the buffer because it represents the 
range of travel for a day trip to visit a lake5.  

After consideration for the covariance of our predictor variables, mean income, 
maxdepth, white population percentage, lake perimeter, upstream lake count, total number of 
households, and median age variables were removed from analysis due to high multicollinearity 
with other variables (r > 0.5).  
 
3.2 Methods 
 Previous literature has used linear models with a logarithmic transformation on non-zero 
PUD values to estimate lake visitation6. In our analysis, we compared this log-linear approach to 
a two-stage hurdle model in order determine which method better fits the PUD data.  
 In building the two-stage model, we separated the zero model component from the count 
model component in order to determine the type of model that best predicts our data. For the 
zero component, a binomial logit model was fit for the data, using the presence of PUD as the 
response (0 indicates no PUD, 1 indicates PUD of at least 1). Variable selection occurred during 
this stage of building the model in order to better identify significant variables in the zero/non-
zero portion of the full hurdle model later. For the count component, the dataset was truncated 
to only lakes with a PUD value of at least 1. This reduced dataset was initially fit to a poisson 
model, which revealed a significant degree of overdispersion amongst the data. In order to 
correct for this, the truncated data was fit to a negative binomial model. 
 To determine the best two-stage model to use for our data, both a hurdle model and a 
zero inflated (ZINB) model were fit, using the reduced zero model constructed earlier and a full 
negative binomial model that used all of our predictor variables. Comparison of these two 
models using Akaike Information Criterion (AIC) found the hurdle model to be a better fit for the 
data (Z = 4.207, p < .001).  
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 Both the two-stage hurdle model and a log-linear model were fit to the data using 
backwards variable selection using AIC and likelihood ratio comparisons. After both models had 
been created, the two were compared using leave-one-out cross validation, using sum of the 
absolute error as a measure. This cross validation found that the hurdle model was a better fit 
for the PUD data. 
 
3.3 Results 
 Our model of lake visitation considered physical lake features, surrounding land usage, 
population demographics, lake amenities, and region as predictor variables. Model estimates for 
the zero component are given in Table 1 and estimates for the count component are given in 
Table 2. 

 
Table 1: Model estimates for the binomial portion of the final hurdle model. One standard error is given in 
parentheses 
 



 

 

 
Table 2: Model estimates for the truncated negative binomial count portion of the final hurdle model. One standard 
error is given in parentheses. The nearby lakes variable is measured by tens. 

Overall, we see regional effects for agricultural region as well as significant effects for 
latitude and longitude. Analysis of model residuals using Moran’s I found significant spatial 
correlation, (Observed I = 0.013,   p < .001) indicating that these location variables do not 
account for all of the geographical influence in the data. However, the observed Moran’s I is 
relatively small, indicating that the effect of any spatial correlation is weak and may not have any 
influence on the interpretation of our model.  

Our two primary variables of interest, water clarity and nearby lakes, were significant in 
both components of the model, as well as interacting with each other in the count component. 
The effects of these two predictors are given in Figure 1 and Figure 2. We also see interactions 
between these variables and agricultural region, so these figures also identify any regional 
effects. Additionally, the effect of the interaction between water clarity and nearby lakes is given 
in Figure 3. 

Additionally, total lake area and HUC12 population were both significant factors in the 
zero and count components of the model. From this we get that larger lakes are more likely to 
be visited and experience a greater degree of visitation than smaller lakes, and lakes in densely 
populated areas are more likely to be visited and will experience a greater degree of visitation 
than lakes in less populated regions. 



 

 

 
Figure 1: Effects plots for clarity and nearby lakes for the zero component of the hurdle model, grouped by region. 
Each line assumes median estimates for all other model predictors, calculated for each agricultural region. Points 
indicate the median observed value for the plotted variable, clarity on the left and nearby lakes on the right. 

Figure 2: Effects plots for clarity and nearby lakes for the 
count component of the hurdle model, grouped by region. Each line assumes median estimates for other model 
predictors, calculated for each agricultural region. Points indicate the median observed value for the plotted variable, 
clarity on the left and nearby lakes on the right. 
  
 
 



 

 

 

 
Figure 3: Effect of clarity and nearby lakes on predicted PUD, using the count component of the hurdle model. 
Contour lines are drawn every 10 PUD. Each plot assumes median estimates for all other model predictors. 
 
3.4 Discussion 

Our model found that there is a significant positive effect of water clarity on lake 
visitation. We would expect that a 1 meter increase in water clarity would increase the odds that 
a lake is visited by 6.07% for a low agriculture lake, 11.39% for an “other” agriculture lake, and 
77.68% for a high agriculture lake (Figure 1, left). In terms of lake preference, people are more 
likely to visit a lake that has clear water as compared to a lake with murky water (Figure 2, 
right). When looking at lakes that are visited, this 1 meter increase in water clarity would 
increase overall lake visitation by 19.11% for a low agriculture lake, 5.97% for an “other” 
agriculture lake, and 18.03% for a high agriculture lake, assuming median number of nearby 
lakes for each agricultural region (Figure 2, left). Again, we see this positive effect for water 



 

 

clarity. Not only are clearer lakes more likely to be visited that murky lakes, but of lakes that are 
visited, clear lakes are visited the most. 

One important factor that affects water clarity is the number of nearby lakes. There is a 
negative interaction between nearby lakes and clarity for lakes that have at least one visit, 
suggesting that as the number of nearby lakes increases, the impact of clarity decreases, which 
we can see in Figure 3. This would seem to suggest that when there are many lakes to choose 
from, people don’t rely as strongly on water clarity to guide lake preference.  

We also see a negative effect for the nearby lakes variable by itself, indicating that when 
there are many lakes near to each other, the visitation to any one lake decreases. Although this 
seems intuitive, it is interesting to note that this effect is present in both stages of the model. 
This means that lakes in regions with a high lake density are less likely to be visited, and among 
lakes that are visited, high density lakes are visited less. 

It should be noted that visits to lakes in high agriculture regions are more affected by 
changes in clarity than lakes in other regions, as evidenced by Figures 1 and 2. We can see in 
these figures that equal changes in water clarity will increase the probability that a lake is visited 
to a greater extent in high agriculture regions than either of the other two regions. This finding 
reveals an interesting difference in lake preference: people living in high agriculture regions 
place a greater importance on lake clarity than people in other regions. One possible 
explanation for this is that the median water clarity in the high ag region is much lower than 
either of the other two regions, making clear lakes more scarce and therefore more valuable to 
lake visitors. 

Other significant factors that influence lake visitation are select lake amenities such as 
beaches, toilets, hotels, and boat launches. Beaches and boat launches were significant 
predictors of visitation, indicating that lakes that possess beaches and boat launches are more 
likely to be visited than those lakes without. All four amenities had positive effects on overall 
visitation, which tells us that lakes with any of these features are visited more than those 
without.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

4. Predicting Water Clarity 
 
4.1 Data 

Land usage statistics were calculated for each lake by averaging the land use 
measurements collected in 1992, 2001, 2006, and 2011. Additionally, a land usage change 
statistic was calculated by taking the difference in land use between 1992 and 2011. 

No lake amenities or HUC12 population demographics were used in this model of water 
clarity. 
 
4.2 Methods 
 A pilot model was constructed for individual lake clarity measurements using chemistry 
data as predictors, in order to identify which chemicals are influential when predicting water 
clarity. Since multiple measurements were taken for many of the lakes, a mixed effects model 
was used with a random effect for lake id. This model found that chlorophyll (chla) and 
phosphorus (tp) were significant. 
 Exploratory data analysis revealed heavy right skews on the clarity, chlorophyll, and 
phosphorus variables, so a logarithmic transformation on all three variables was performed. 

Our model of lake clarity considered physical lake features, location and region 
identifiers, surrounding land usage, and water chemistry as predictor variables. Model estimates 
are given in Table 3.  

A full linear mixed effects model was constructed using a log-transformed water clarity 
as the response variable. The dataset used was restricted to only lakes that had values for 
every variable initially considered. This reduced the size of the dataset from 224,759 
observations to 62,268 observations. We initially considered random effects for lake id, 
chlorophyll, and phosphorus. However, there were not enough repeated measurements of 
chlorophyll and phosphorus within each lake to adequately model a lake-specific chlorophyll or 
phosphorus effect, so we ended up only using a random effect for lake id. An interaction 
between each of the chemicals and agricultural region was considered for this model. 

After constructing the full linear mixed effects model and eliminating insignificant 
predictors, we obtained a model with the predictor set shown in Table 3. In order to assess the 
validity of model estimates, our final model was refit to the original dataset of 224,759 
observations.  

 
4.3 Results 
 Analysis revealed significant effects for agricultural region, as well as latitude and 
longitude. A calculation of spatial correlation was conducted using Moran’s I for the model 
residuals. We found significant spatial correlation between residuals, Observed I =  0.05320,     
p < .001. However, the observed Moran’s I is relatively small, indicating a weak effect for spatial 
correlation, which may not have any practical implications on the interpretation of our model. 
 We have significant effects for our two chemicals of interest, chlorophyll and 
phosphorus, as well as a significant interaction with agricultural region for both chemicals. 
Effects of these variables are given in Figure 4 and Figure 5. 
 To test the validity of our model, the final model was fit onto both the restricted dataset 
used during the initial modeling process and a full dataset containing all observations for every 



 

 

lake. Confidence intervals were constructed for each variable for both models, which are given 
in Table 4. Comparison of the two models revealed that the estimates are not significantly 
different from each other, indicating that our model is a good fit for the data. 
 
  

 
Table 3: Estimates for the linear mixed effects model of lake clarity. All variables in the model were significant at the  

p < .05 level. This model uses the restricted dataset mentioned in  
Table 4: Confidence intervals for model estimates using a restricted dataset (small) and a full dataset (big). Only 
variables that were found to be significant during modeling are included 
 



 

 

 
 
 
 
Figure 4: Effect plot of chlorophyll 
on water clarity, grouped by 
agricultural region. Each line 
assumed median levels of all 
model variables, calculated for 
each region independently. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Effect plot of 
phosphorus on water clarity, 
grouped by agricultural region. 
Each line assumed median levels 
of all model variables, calculated 
for each region independently. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
4.4 Discussion 
 Our model found significant negative effects for both chlorophyll and phosphorus, 
indicating that an increase in levels of either chemical result in a decrease of water clarity. 
Additionally, there was a significant positive interaction for both these chemicals with agricultural 



 

 

region. This finding suggests that, for lakes in Low and “Other” agricultural regions, chlorophyll 
and phosphorus do not have as strong of an effect as in high agricultural regions. We can see 
this in both Figure 4 and Figure 5, where the estimates for high agriculture lakes appear to have 
a lesser slope than the estimates for either low or other agriculture lakes. One possible 
explanation for this is that lakes in high agricultural regions have a lower water clarity than either 
of the other two regions, which would make it more difficult for an increase in either chlorophyll 
or phosphorus to have an impact on the already poor lake clarity. 

Additionally, we found significant negative effects for four different types of land usage: 
commercial/industrial, pasture/hay, woody wetlands and emergent herbaceous wetlands. These 
findings seem straightforward. Land used for both commercial/industrial and pasture/hay would 
increase the amount of pollutants introduced into the lake, while the wetlands would deposit 
tannins into the water. Tannins occur naturally in the bark of trees found in wetlands, and are 
colored brown, which would decrease the clarity of the lake water. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

5. Predicting Change of Eutrophic Status 
 
5.1 Data 

 We considered average clarity for lake measurements collected for the summer months 
(June 15th - Sept 15th) from 2000 to 2002, and again for summer months (June 15th - Sept 
15th) from 2005 to 2007. A binary indicator for lake eutrophic status in 2001 and 2006 was 
created using these average clarity measurements; a 1 indicates a eutrophic lake (average 
clarity less than 1.83m) and a 0 indicates a non-eutrophic lake. 

All variable measurements were restricted to the same time frame as our clarity 
measurements. Chlorophyll and phosphorus values were averaged for the 2000-2002 and 
2005-2007 periods. A change value was calculated for each chemical by taking the difference 
between the observed levels for each period (2005-2007 minus 2000-2002).  

  Land usage statistics were measured in 2001 and 2006. A change of land usage 
variable was constructed for each classification of land usage by taking the difference between 
the two measurements. One classification, Evergreen Forest, was found to have a change value 
of 0 for every lake in the dataset and so the variable was removed from our analysis. 
 
5.2 Methods 
 The data were divided into two groups based on eutrophic status in 2000-2002. This 
resulted in a dataset of 618 lakes that were eutrophic during the initial period and 305 lakes that 
were non-eutrophic. Lakes in the eutrophic dataset were restricted to having a depth of at least 
1.83 meters.  

A binomial logistic model was created for each dataset, using eutrophic status in 2006 
as the response variable. Both models used the same initial set of predictor variables, but 
variable selection occurred separately. 
 Exploratory data analysis of empirical log odds for each predictor variable revealed that 
a quadratic term for both change in chlorophyll and change in phosphorus was appropriate for 
the models. Variables included in the initial models are change in chlorophyll, change in 
phosphorus, initial mean clarity in 2000-2002, latitude/longitude and agricultural region, change 
in land usage statistics, total area of the lake, total number of upstream lakes, and maximum 
water depth. 
 
5.3 Results 
 Table 5 gives model estimates for lakes that were not eutrophic in 2000-2002. This 
model found that initial clarity in 2001 and change in chlorophyll were significant predictors of 
eutrophic status in 2006. These effects are shown in Figure 6.  

There were no significant effects for agricultural region or latitude/longitude. Model 
residuals were analyzed for spatial correlation using Moran’s I, revealing a significant correlation 
(Observed I = 0.0262, p < .001). Although the spatial correlation was significant, the observed 
Moran’s I had a small effect size indicating a weak spatial correlation, which may have little 
practical influence on the variance of model estimates.  
  



 

 

 
Table 5: Estimates for the binomial logistic model for non-eutrophic lakes in 2000-2002. One standard error is given 

in parentheses 
 
 
 
 
Figure 6: Effect of chlorophyll change on the 
probability of eutrophic status in 2006, using 
non-eutrophic lakes in 2001. Effects are 
grouped by quartiles of initial clarity in 2001. 
 
 
 
 
 
 
 
 
 
 
  

Model estimates for lakes that were eutrophic in 2001 are given in Table 6. This model found 
significant effects for initial clarity, change in chlorophyll and change in phosphorus, as well as a 
significant quadratic effect for both chemical change variables. Effects these variables are given 
in Figure 7.  
 No significant effects for latitude/longitude or agricultural region were found. Analysis of 
spatial correlation within model residuals revealed significant correlation (Observed I = 0.0322,  
p = .002). However, the observed Moran’s I is relatively small which suggests a weak effect of 
spatial correlation. As such, there may be no substantial influence of this correlation on model 
interpretations. 
 



 

 

 
Table 6: Estimates for the binomial logistic model for eutrophic lakes in 2000-2002. One standard error is given in 
parentheses. 

Figure 7: Effects of change in chlorophyll (left) and change in phosphorus (right) on the probability of being eutrophic 
in 2006, using eutrophic lakes in 2001. Effects are grouped by quartile of initial clarity in 2001. 
 
5.4 Discussion 

Both models found significant negative effects for initial clarity in 2001. For non-eutrophic 
lakes in 2001, a 1 meter increase in initial clarity results in a 74.5% decrease in the odds that a 
given lake will be eutrophic in 2006. For eutrophic lakes in 2001, this 1 meter increase in initial 
clarity results in a 36.6% decrease in the odds that a given lake will be eutrophic in 2006. This 
finding is unsurprising, since lakes that have initial clarity levels closer to the eutrophic cutoff of 
1.83 meter would be more likely to experience a change in eutrophic status. We can see this 
effect in both Figure 6 and Figure 7, where lakes at higher quartiles of initial clarity have the 
lowest probability of being eutrophic in 2006. 



 

 

We also have significant positive effects for change in chlorophyll in both models, and a 
positive effect for change in phosphorus when lakes were eutrophic in 2001. From Figure 7, we 
can see that large changes in chlorophyll, regardless of the change being positive or negative, 
result in high probabilities of being eutrophic in 2006. This occurs because we have a significant 
quadratic effect for chlorophyll change. It is important to note that there is also a significant 
quadratic effect for change in phosphorus, but it has a much smaller effect size. Because of this, 
we do not see an increase in the probability that a lake will be eutrophic in 2006 at large 
negative changes in phosphorus.  

The finding that chemical changes have significant effect on the probability of a lake 
being eutrophic is supported by our earlier model of water clarity, where both chlorophyll and 
phosphorus were significant factors for predicting water clarity. Using this earlier model, we 
would also predict that both changes in chlorophyll and phosphorus would have a positive effect 
on the probability of being eutrophic in 2006 because both of these chemicals were found to 
have a negative effect on water clarity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

6. Predicting Missing Clarity Measurements 
 
6.1 Data 
 In order to better predict whether or not a lake is measured for water clarity, we 
restricted our data to only the 51,107 lakes that were recorded with PUD data. Additionally, any 
lakes that were missing population data or land usage statistics were removed. This left us with 
a total of 48,873 lakes for analysis.  
 In an attempt to correspond with the time frame of the PUD data, clarity measurements 
were limited to only those take between June 15 and September 15, since the year 2005. A 
binary indicator was created for whether a lake was missing clarity measurements. A 1 indicates 
that a lake was not measured for clarity during this time period (missing); a 0 indicates that the 
lake had at least one measurement. Out of all lakes in the PUD data set, only 5,609 (11%) of 
these lakes have at least one clarity measurement during the summer since 2005.  

Lake perimeter, upstream lake count, and percent of land used by deciduous forest 
variables were removed from analysis due to high multicollinearity with other variables. Also, the 
max depth variable was removed from analysis due to large amount of NA’s. 

Dummy variables were created for three of the land use classifications due to a large 
proportion of observed 0 values: Developed Medium Intensity, Developed High Intensity, Barren 
(Rock/Sand/Clay) variables. For these variables, a 1 indicated that the surrounding area 
contained some portion of land dedicated to these classifications, and a 0 indicates no land 
used for each. 

Exploratory data analysis revealed heavy right skews on the total population, lake area, 
and percentage of canopy variables, so a logarithmic transformation was performed.  
 
6.2 Methods 

A binomial logistic model was fit to our data, using the indicator of missing clarity as the 
response. This model physical lake features, location and region identifiers, surrounding land 
usage, and demographic info as predictor variables. An interaction with agricultural region was 
considered for the four main variables of interest: lake area, population, canopy, and upstream 
lake area. Backwards selection was then performed to eliminate all the insignificant variables. 
 
6.3 Results 
 Model estimates for missing clarity are given in Table 7. This model found significant 
effects for three of our variables of interest: total population, lake area, and percentage of 
canopy cover. Moreover, there were significant interactions with agricultural region for all three 
of these variables. The effects of population, lake area, and canopy cover in the model are 
given in Figure 8, Figure 9, and Figure 10 respectively. 
 The model also found significant effects for many different types of land usage, such as 
all four types of developed land, evergreen and mixed forests, and woody and emergent 
herbaceous wetland.  



 

 

 
   Table 7: Model estimates for 
the binomial model for missing 
clarity. One standard error is 
given in parentheses.  

 
 
 
Figure 8: Effect of lake area 
change on the probability of 
whether or not a lake misses 
clarity measurement. Effects are 
grouped by different agricultural 
classifications. Each line 
assumed median levels of all 
model variables, calculated for 
each region independently. 

 
 
 
 

 
 
 
 



 

 

 

 

Figure 9: Effect of percentage of 
canopy cover change on the 
probability of whether or not a 
lake misses clarity 
measurement. Effects are 
grouped by different agricultural 
classifications.Each line 
assumed median levels of all 
model variables, calculated for 
each region independently. 

 
 

 

 

 

 

Figure 10: Effect of total 
population change on the 
probability of whether or not a 
lake misses clarity 
measurement. Effects are 
grouped by different agricultural 
classifications. Each line 
assumed median levels of all 
model variables, calculated for 
each region independently. 

 
 
 
 
 
6.4 Discussion 

 According to our model, there appears to be an increased probability of missing clarity 
measurement for northern/western lakes, based on the significance of latitude and longitude. 
Figure 11 shows the distributions of lakes that have been measured and lakes that are missing 
clarity measurements during the time period under consideration. 



 

 

 
Figure 11: Map of all lakes used during modeling. Red indicates lakes that are missing clarity measurements; blue 
indicates lakes that have been measured. 

 Our model found a significant negative effect for lake area, which indicates that larger 
lakes are more likely to have clarity measurements. However, due to the presence of an 
interaction between area and agricultural region, the effect of lake size varies across the 
regions: for high agricultural region, doubling lake area will result in 57% decrease in the odds 
the lake is missing a clarity measurements; for low agricultural region, this doubling of lake area 
decreases the odds of missing clarity by 45%; for other agricultural region, a doubling of area 
decreases the odds of missing clarity by 57%.  

Additionally,the model suggests that total population has a negative effect on missing 
clarity. According to our findings, lakes in densely populated areas are less likely to miss clarity 
measurements. We would expect that doubling the HUC12 population size around a lake would 
decrease the odds that a lake is missing clarity measurement by 22% for a high agricultural 
region lake, 0.1% for a low agricultural region lake, and 17% for an “other” agricultural region 
lake.   

The third variable of interest that was significant in the model was percentage of canopy 
coverage for a lake. Canopy was found to have a negative effect on missing clarity 
measurements, which indicates that lakes with a larger degree of canopy are less likely to be 
missing clarity measurements. It should be noted that, compared to lake area and population, 
canopy had a relatively low effect size, resulting in a smaller impact on the probability that a lake 
is missing a clarity measurement. We can see this effect in Figure 9 above. 

An interesting result from this model was that a variety of land usage classifications were 
significant, with both positive and negative effects. We see positive effects for Open Water, 
Evergreen Forest, Scrub/Shrub, Woody Wetlands, and Emergent Herbaceous Wetland, or 
containing High Intensity Residential Area or Barren (Rock/Sand/Clay) which suggest that 
higher percentages of land used for these categories would increase the odds that a lake would 



 

 

not be measured for clarity.  Alternatively, we have negative effects for Open Space, Low 
Intensity Residential Area, Mixed Forest, Pasture/Hay, or containing Medium Intensity 
Residential Area, which would indicate that higher percentages of land used by these categories 
would decrease the likelihood that a lake would be missing a clarity measurement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Appendix A: Exploratory Data Analysis for Lake Visitation Model 
 
 
 
 
Figure A-1: Boxplot of Summer PUD 
grouped by agricultural region. Data for 
this plot was taken from the truncated 
dataset (Lakes with PUD > 0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A-2: Boxplot of water clarity 
grouped by agricultural region. Data for 
this plot was taken from the full dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 

 

 
Figure A-3: Boxplot of nearby lakes 
grouped by agricultural region . Data for 
this plot was taken from the full dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-4: 
Scatterplots 
comparing clarity 
and nearby lakes 
with Summer PUD, 
grouped by 
agricultural region. 
Data used for these 
plots was taken 
from the truncated 
dataset (lakes with 
summer PUD > 0). 
 



 

 

Appendix B: Exploratory Data Analysis for the Model of Water Clarity 
 

 

Figure B-1: Scatterplots of clarity with 
chlorophyll (left), phosphorus (middle), and hu4id indicator (right). 
Figure B-2: Histogram distributions of water clarity (left), phosphorus (middle), and chlorophyll (right) 
 
 
WebLink 1: https://statscon.shinyapps.io/ClarityMap/ 
This link leads to an interactive map showing all lakes used in model of water clarity. Map features 
include descriptions of each lake using measured values for all variables in the model, effects plots for 
both chlorophyll and phosphorus using lake specific values, and predicted clarity levels for all lakes. 
 
 
 



 

 

Appendix C: Exploratory Data Analysis for the Model of Eutrophic Status 
 
 

 
 
Figure C-1: Empirical log odds plots for 
clarity, using lakes that were non-
eutrophic in 2001 (left) and lakes that 
were eutrophic in 2001 (right) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C-2: Empirical log odds plots for 
both chlorophyll and phosphorus, using 
the middle 95% of observed values. The 
top plots are for lakes that were non-
eutrophic in 2001, and the bottom plots 
are for lakes that were eutrophic in 2001. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

WebLink 2: https://statscon.shinyapps.io/EutrophicMap/ 
This link leads to an interactive map modeling eutrophic status of lakes in 2006. Map features include 
descriptions of all lakes in 2001 and 2006, a map showing lakes that changes eutrophic status between 
the two years, and the probability that a selected lake was eutrophic in 2006. 
 
 
 
Appendix D: Exploratory Data Analysis for the Model of Missing Clarity 

 
 
Figure D-1: Barplot of percentage of 
lakes missing clarity measurements 
grouped by agricultural region. Data for 
this plot was taken from the full PUD 
dataset. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure D-2: Boxplot of lake area by 
whether or not misses clarity 
measurements. Data for this plot was 
taken from the full PUD dataset. 
 
 


