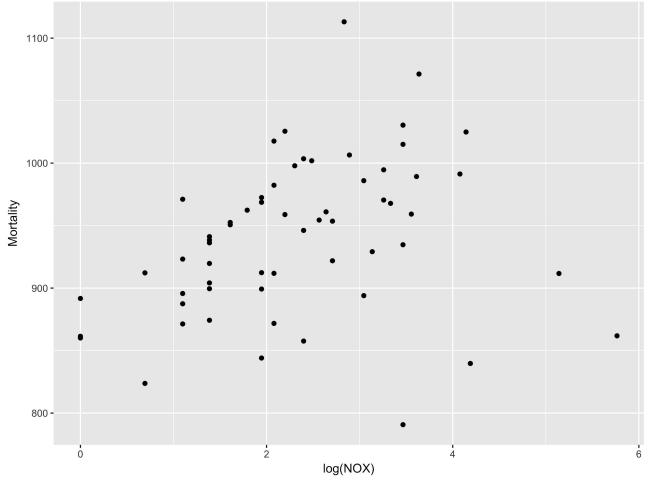
Training Machines to See What You See

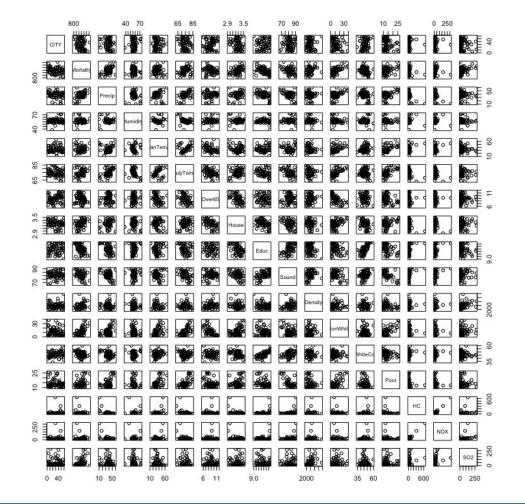
Let's start with some data

How does air pollution affect mortality?

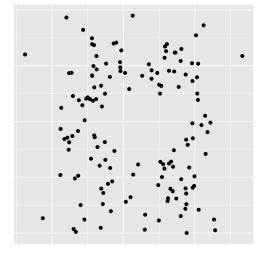
Data set with both pollution and socioeconomic data for 5 Standard Metropolitan Statistical Areas in the U.S between 1959–1961.

60 observations of 17 variables.

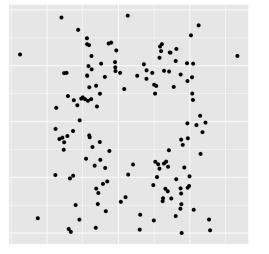




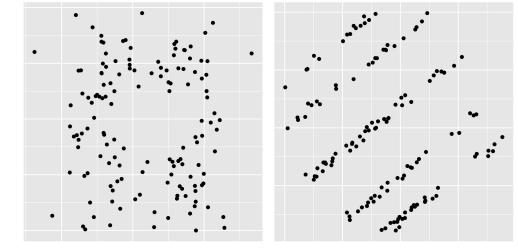
Can we train a computer to detect patterns more effectively and efficiently than humans?



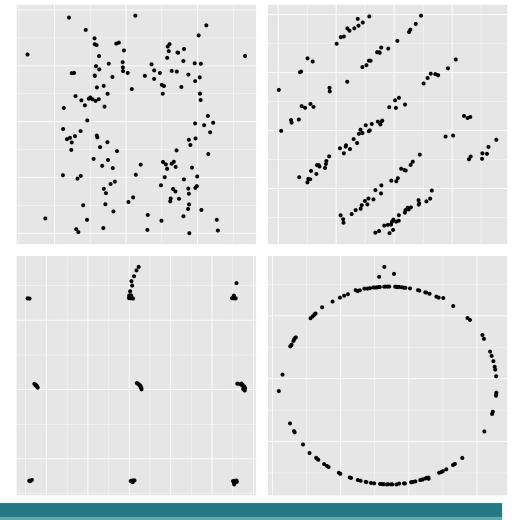
Mean(X)	54.26
Mean(Y)	47.83
$\operatorname{Std}.\operatorname{Dev}(X)$	16.76
Std.Dev(Y)	26.93
Correlation	-0.06

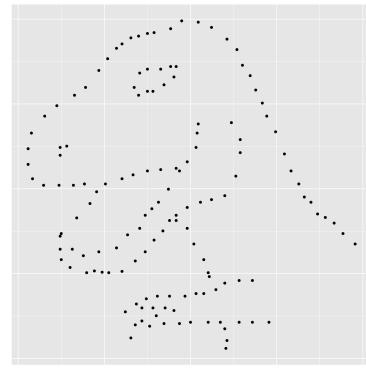


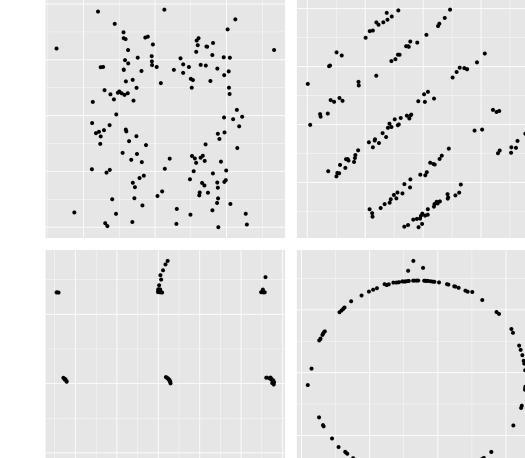
Mean(X)	54.26
Mean(Y)	47.83
$\operatorname{Std}.\operatorname{Dev}(X)$	16.76
Std.Dev(Y)	26.93
Correlation	-0.06



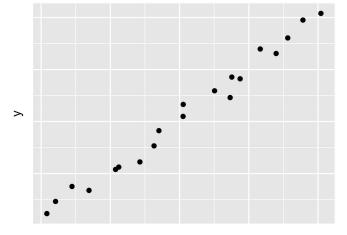
Mean(X)	54.26
Mean(Y)	47.83
$\operatorname{Std}.\operatorname{Dev}(X)$	16.76
Std.Dev(Y)	26.93
Correlation	-0.06

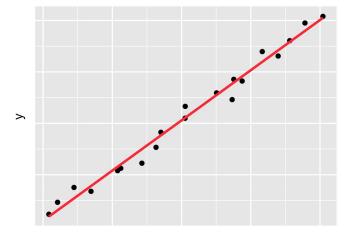




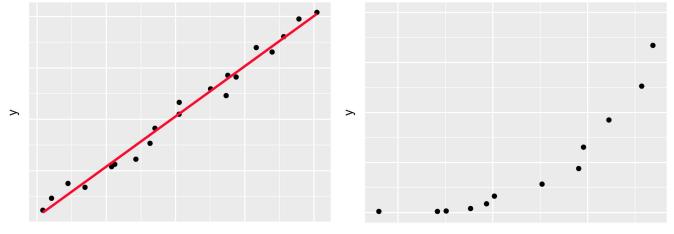


Datasaurus Dozen, Alberto Cairo

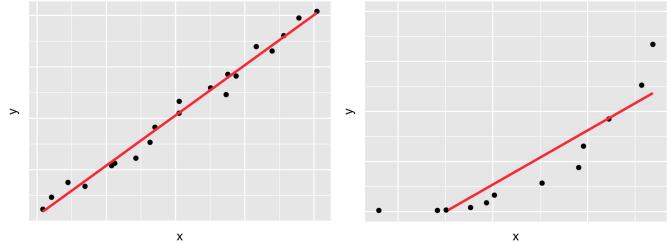


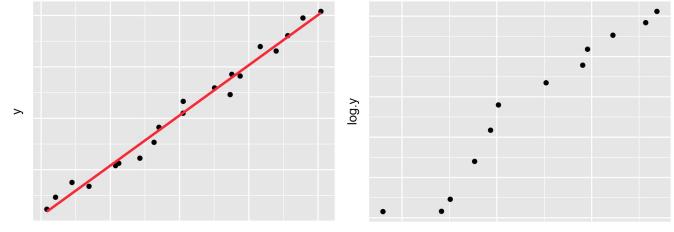


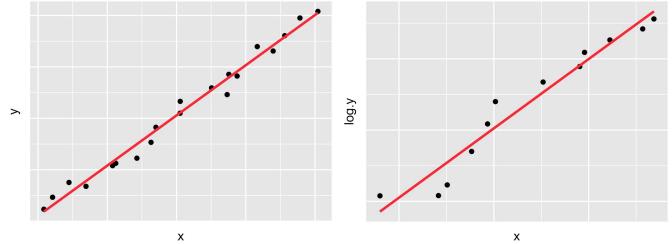
Х

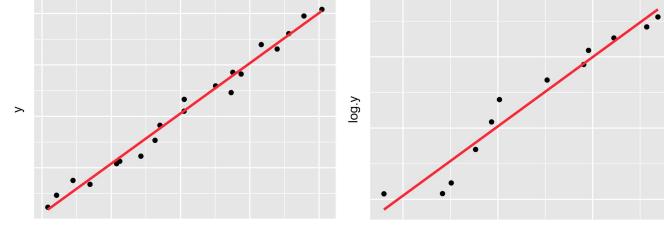


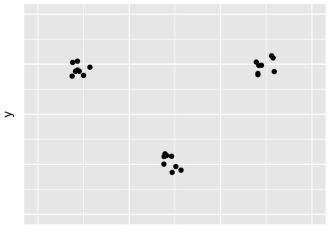
Х

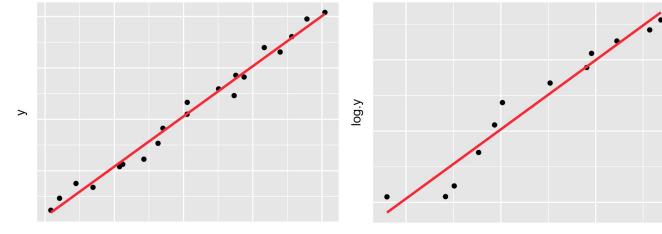


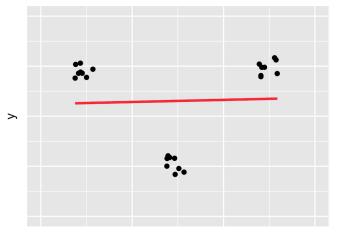


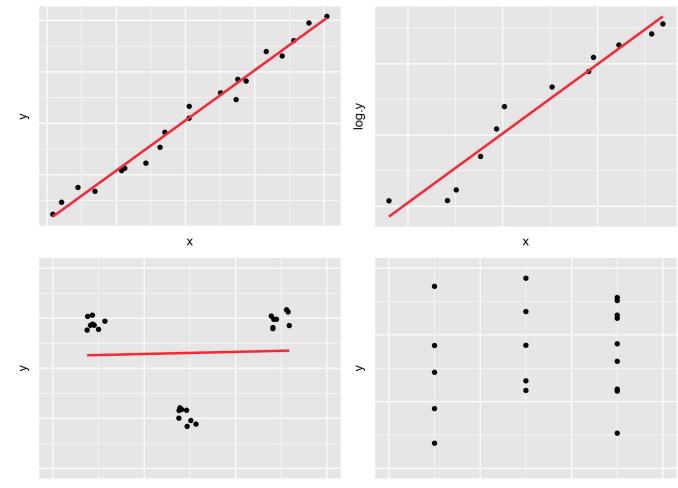




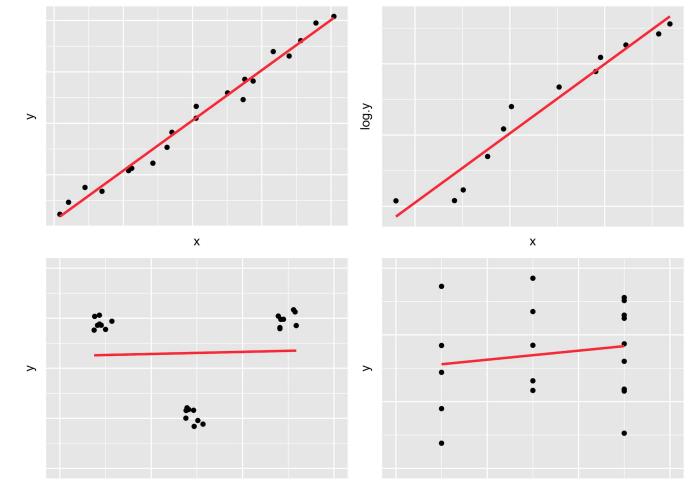






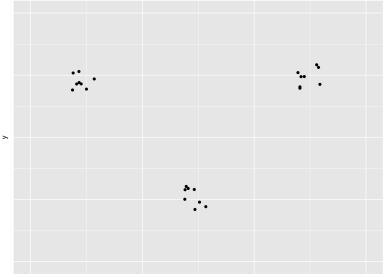


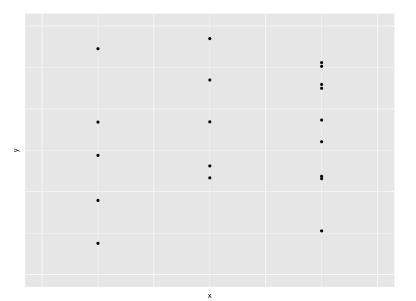
Х



Х

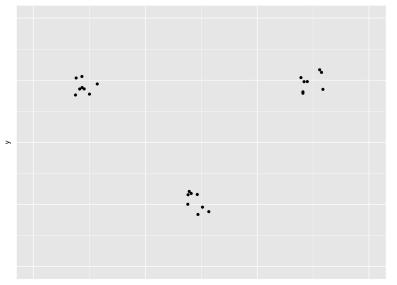
How would you approach this problem?

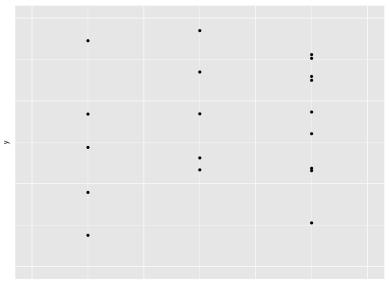




Scatterplot Diagnostics

Patterns





х

x

Scagnostics

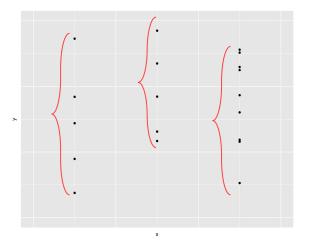
• Tukey and Tukey (1985) coined

"scagnostics" - scatterplot diagnostics

• Further defined by Wilkinson, Anand, and

Grossman (2005, 2008)

~		
	$\underbrace{}_{\overset{\bullet}{\overset{\bullet}}}$	

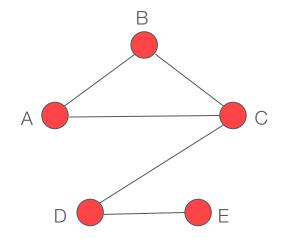


What is a geometric graph?

- A graph is a set of vertices V which are related by edges e(v,w) in E and v,w in V
- *Geometric graphs* can be represented as points and lines in a metric space S

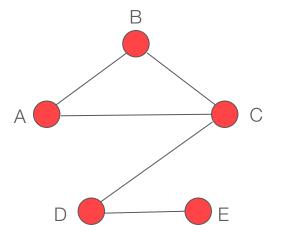
 $V = \{A, B, C, D, E\}$

- $E = \{(A,B), (A,C), (B,C), (C,D), (D,E)\}$
- S = 2 dimensional space



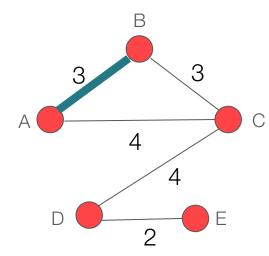
Graphs for Scagnostics

- Undirected
- Simple
- Planar
- Straight
- Finite



Graph Feature Measures

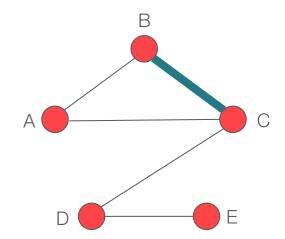
Length(e) is the Euclidean distance between the vertices of an edge eLength(G) is the total length of all edges of a graph G



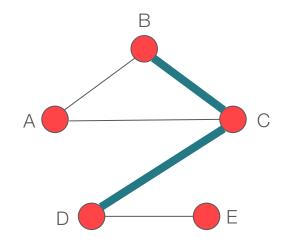
Length(AB) = 3

Length(G) =
$$3 + 3 + 4 + 4 + 2 = 16$$

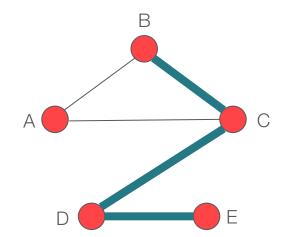
A *path* is a list of vertices such that all successive pairs are an edge



A *path* is a list of vertices such that all successive pairs are an edge

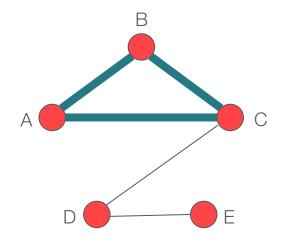


A *path* is a list of vertices such that all successive pairs are an edge



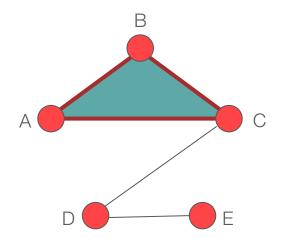
A path is *Closed* if its first and last vertices are the same

A *polygon* is the boundary of a closed path



Area(P) is the area of polygon P

Perimeter(P) is the length of the boundary of polygon *P*.



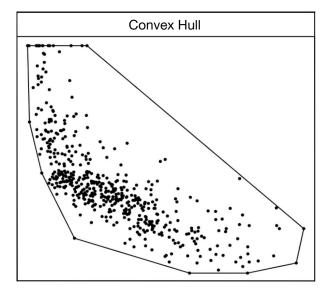
Geometric Graphs of Interest

• Convex Hull

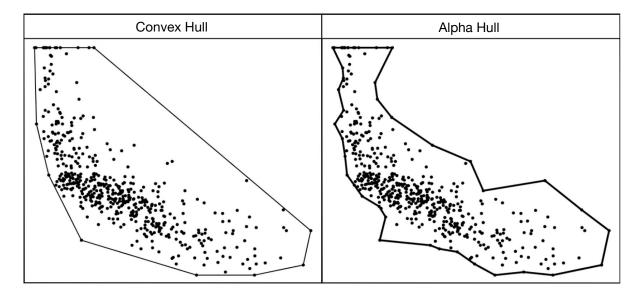
• Alpha Hull

• Minimum Spanning Tree

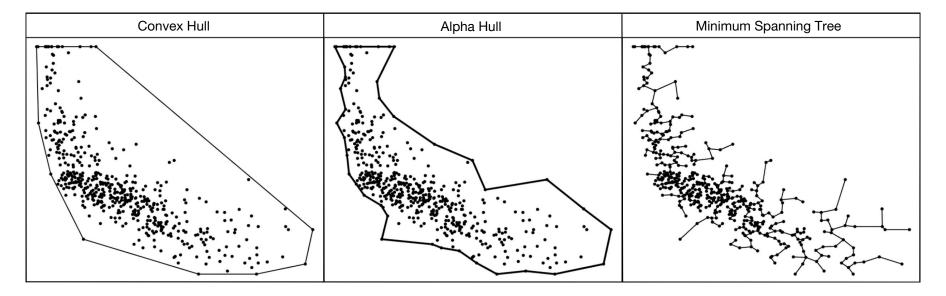
Convex Hull



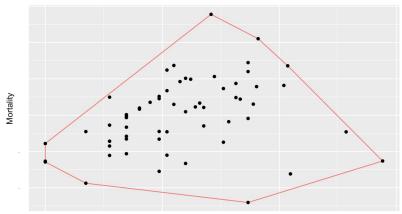
Alpha Hull

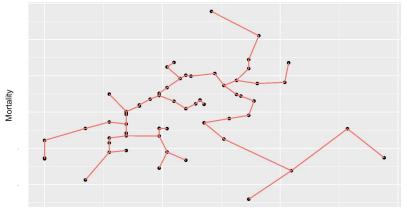


Minimum Spanning Tree



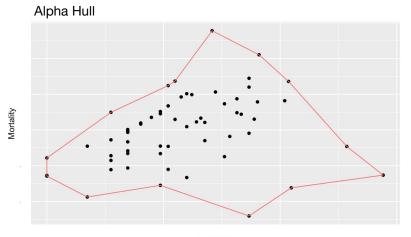
Convex Hull





log(NOX)

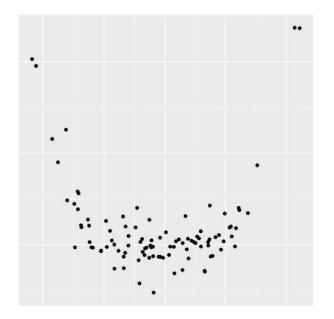
log(NOX)



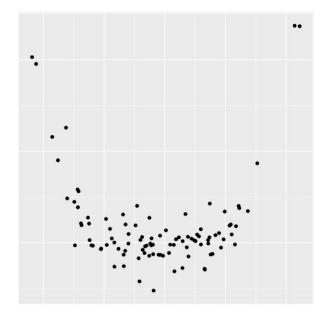
log(NOX)

Calculating Scagnostics

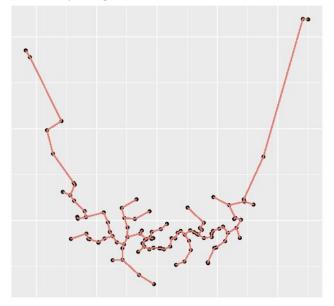
How do we quantify patterns?



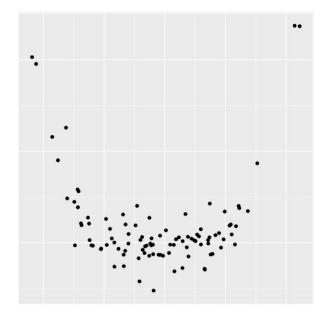
Suppose we want to measure how "stringy" a plot is

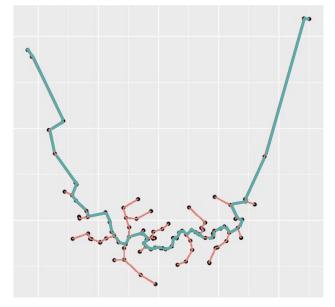


Minimum Spanning Tree

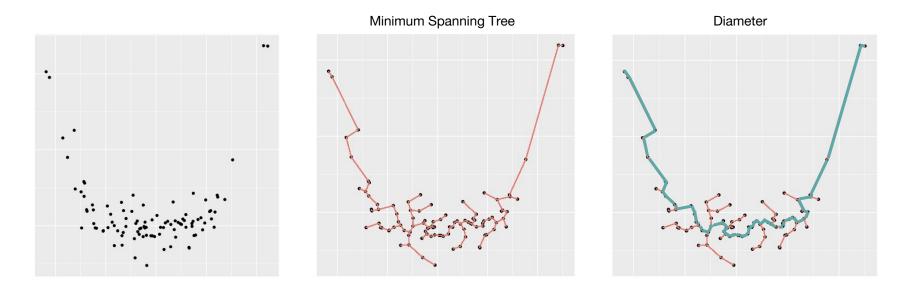


Suppose we want to measure how "stringy" a plot is





$$c_{stringy} = \frac{diameter(T)}{length(T)}$$



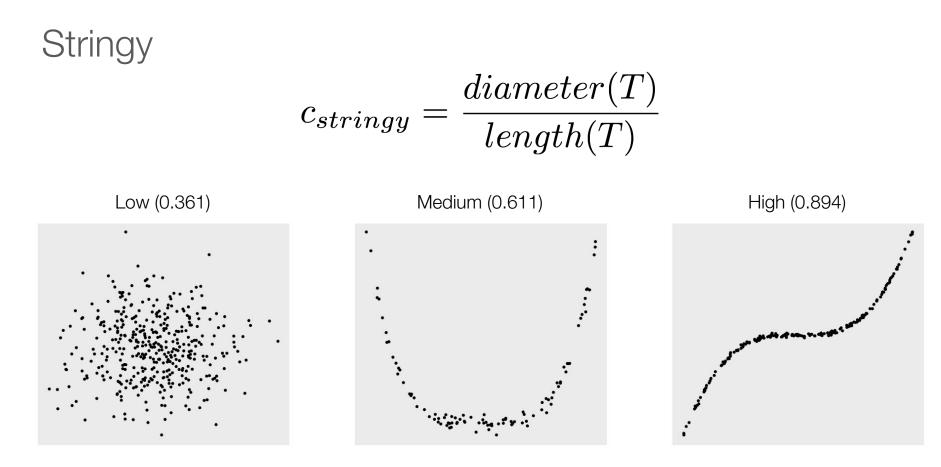
Scagnostic Measures

Shape

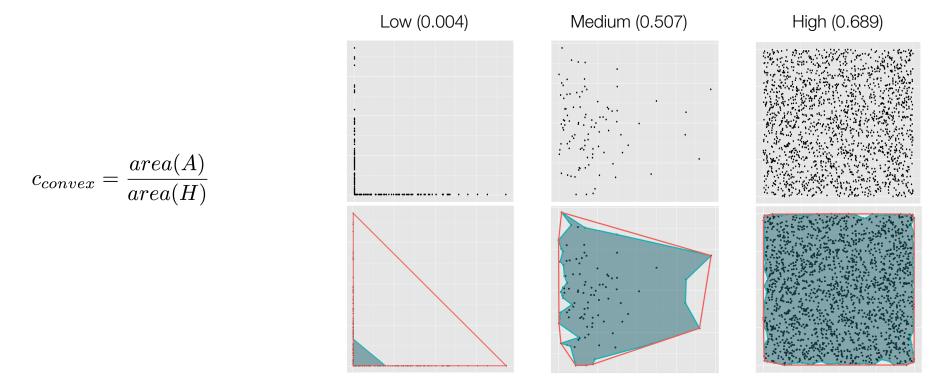
- Stringy
- Convex
- Skinny
- Clumpy
- Striated

Density and Association

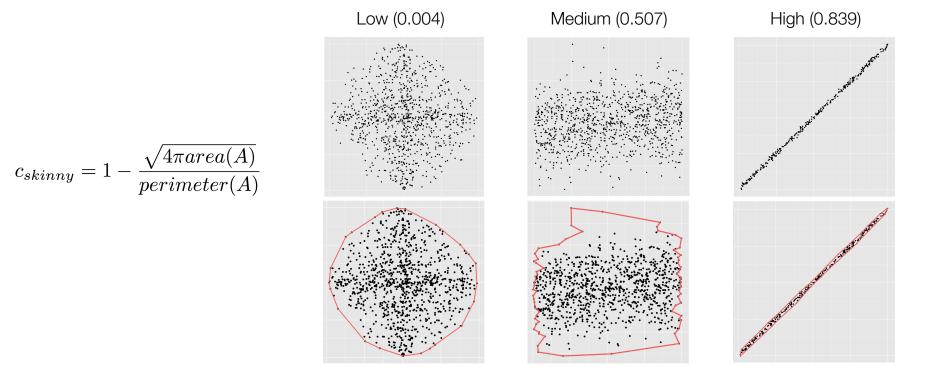
- Monotonic
- Outlying
- Sparse
- Skewed



Scagnostics: Shape

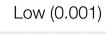


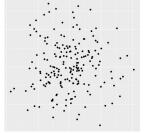
Scagnostics: Shape

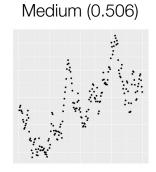


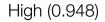
Scagnostics: Association

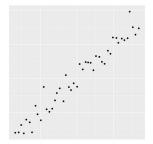
$$c_{monotonic} = r_{spearman}^2$$





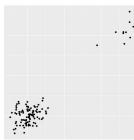




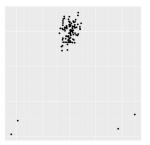


Low (0.052) .

Medium (0.543)

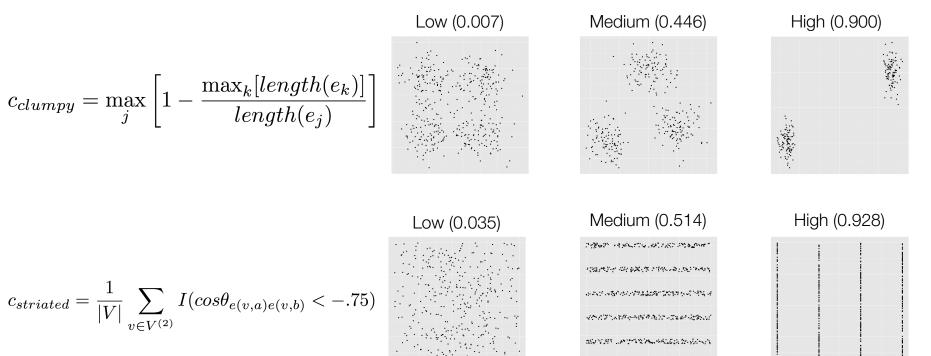


High (0.976)



$$c_{outlying} = \frac{length(T_{outliers})}{length(T)}$$

Scagnostics: Shape



2000 - 100 - 100 - 2000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1

Scagnostics: Density

$$c_{sparse} = q_{90}(T)$$

$$Low (0.382)$$

$$Medium (0.526)$$

$$High (0.877)$$

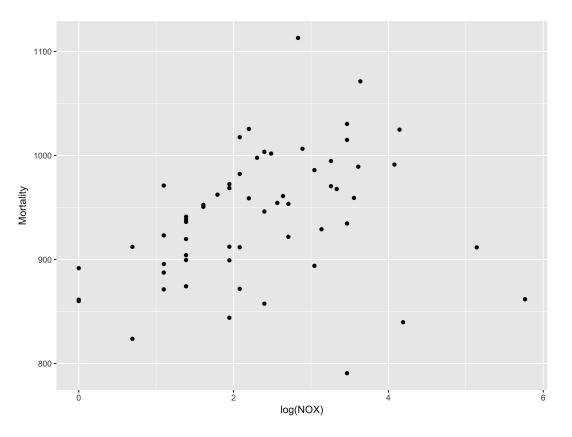
$$c_{skew} = \frac{q_{90}(T) - q_{50}(T)}{q_{90}(T) - q_{10}(T)}$$

Low (0.080)

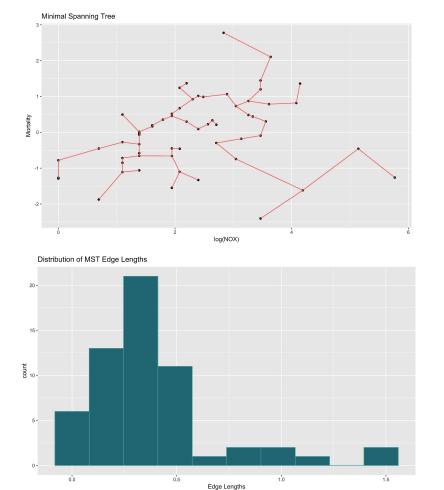
Medium (0.415)

High (0.754)

How Scagnostics Work



Outlying: 0.496 Skewed: 0.556 Clumpy: 0.038 Sparse: 0.098 Striated: 0.100 Convex: 0.718 Skinny: 0.236 Stringy: 0.521 Monotonic: 0.340



Outlying: 0.496 **Skewed: 0.556** Clumpy: 0.038

Sparse: 0.098

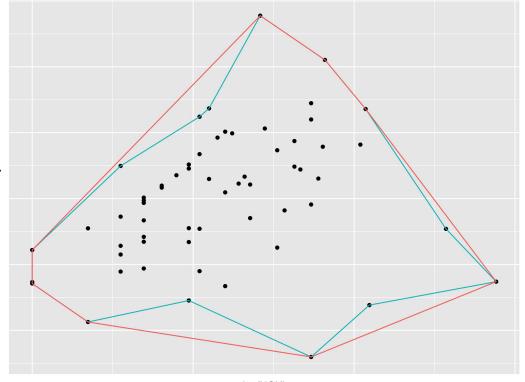
Striated: 0.100

Convex: 0.718

Skinny: 0.236

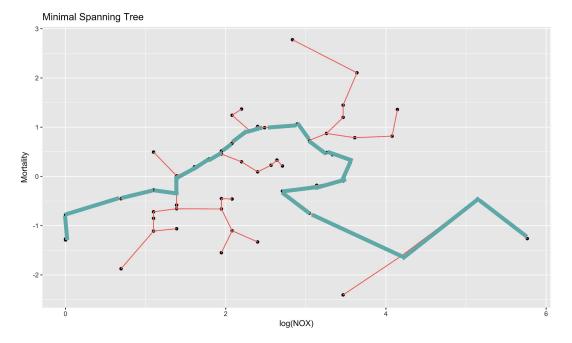
Stringy: 0.521

Monotonic: 0.340



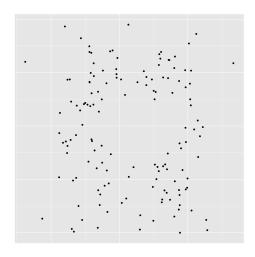
Outlying: 0.496 Skewed: 0.556 Clumpy: 0.038 Sparse: 0.098 Striated: 0.100 **Convex: 0.718** Skinny: 0.236 Stringy: 0.521 Monotonic: 0.340

log(NOX)

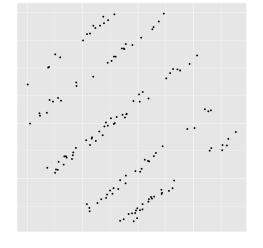


Outlying: 0.496 Skewed: 0.556 Clumpy: 0.038 Sparse: 0.098 Striated: 0.100 **Convex: 0.718** Skinny: 0.236 Stringy: 0.521 Monotonic: 0.340

How Scagnostics Differentiate Plots

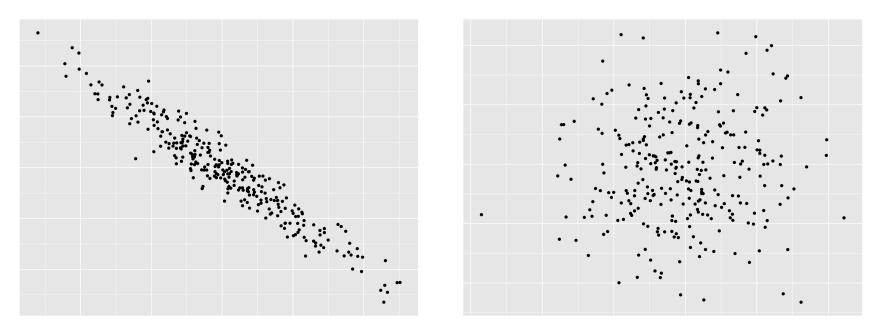


Outlying: 0.108 Skewed: 0.617 Clumpy: 0.002 Sparse: 0.078 Striated: 0.076 Convex: 0.522 Skinny: 0.571 **Stringy: 0.369** Monotonic: 0.008

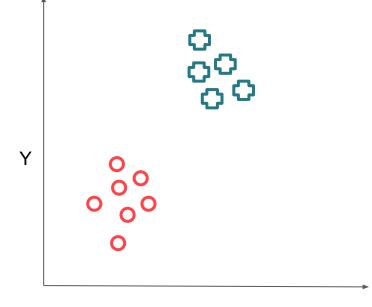


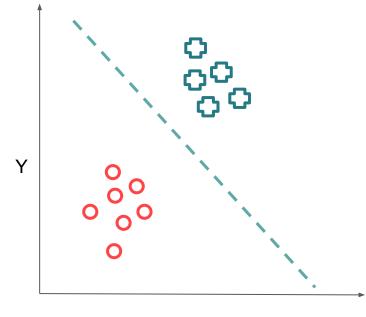
Outlying: 0.088 Skewed: 0.749 Clumpy: 0.142 Sparse: 0.067 Striated: 0.172 Convex: 0.094 Skinny: 0.838 Stringy: 0.559 Monotonic: 0.003

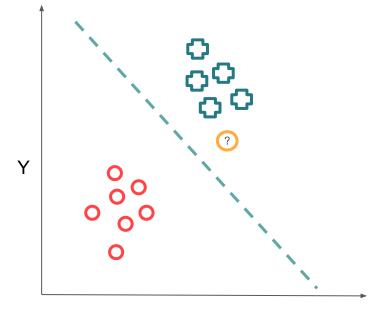
Building the Model

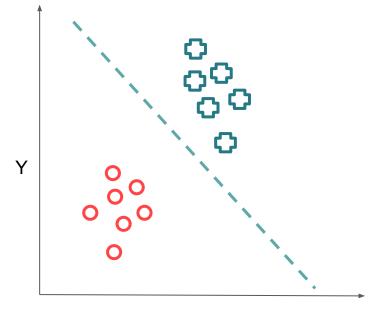


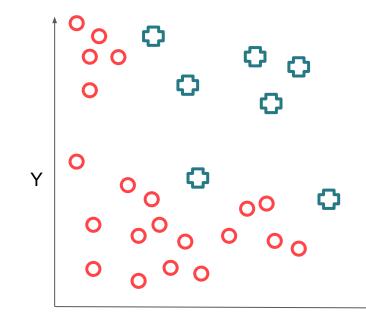
Statistical Learning

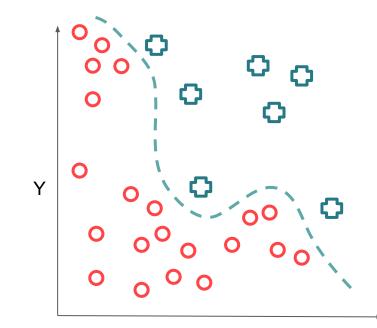


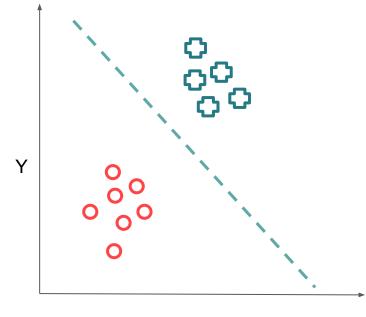


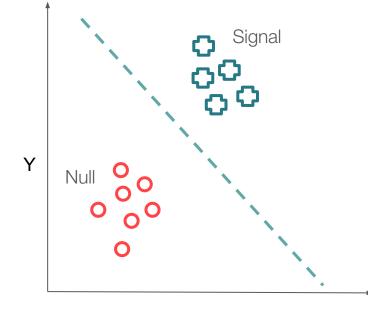




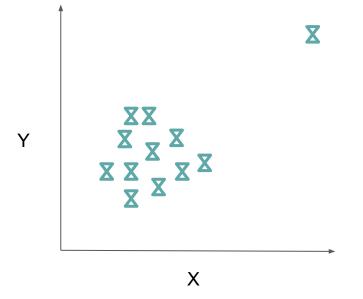




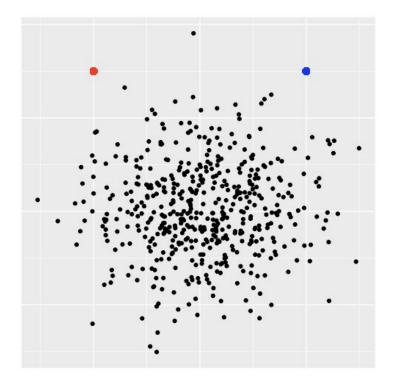


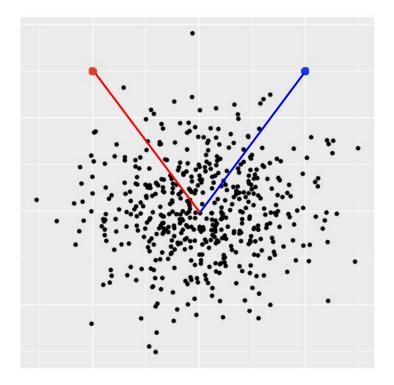


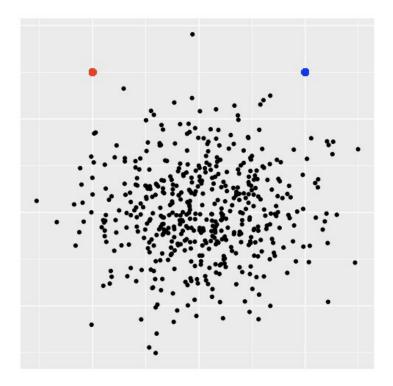
Unsupervised Learning

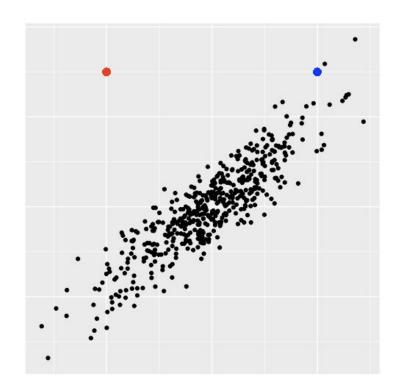


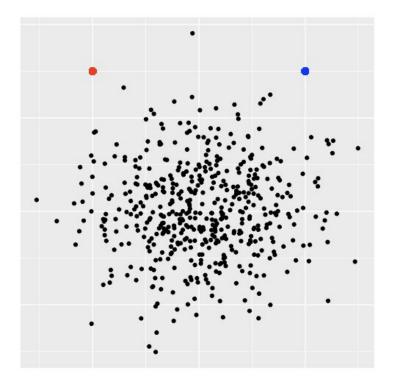
Unsupervised Method: Distance



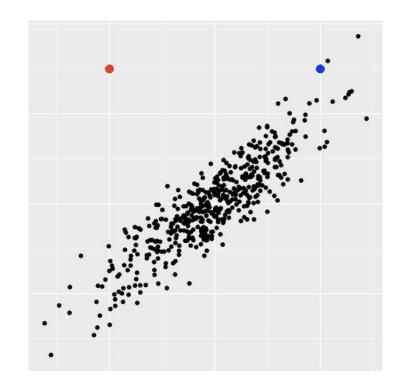








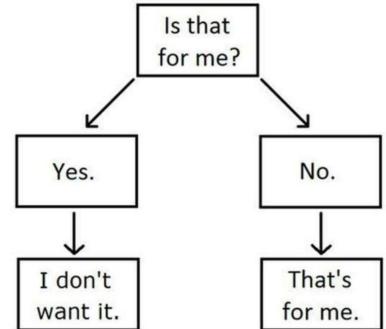
Mahalanobis Distance



Supervised Method: Random Forest

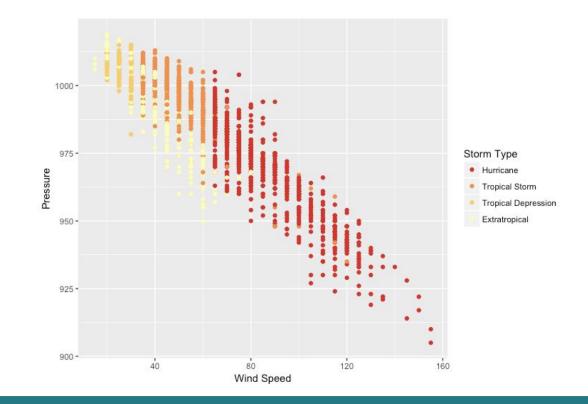
Decision Tree

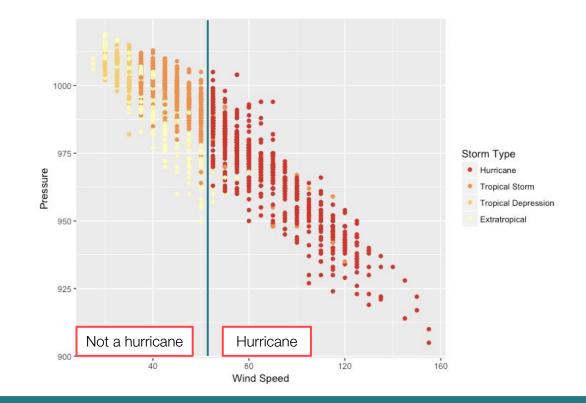
My Cat's Decision-Making Tree.

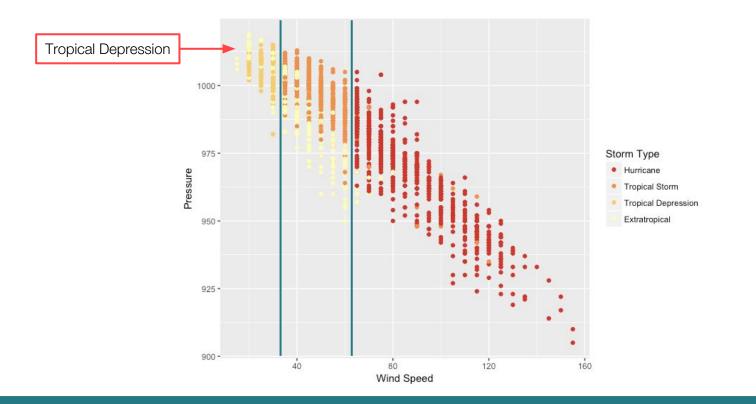


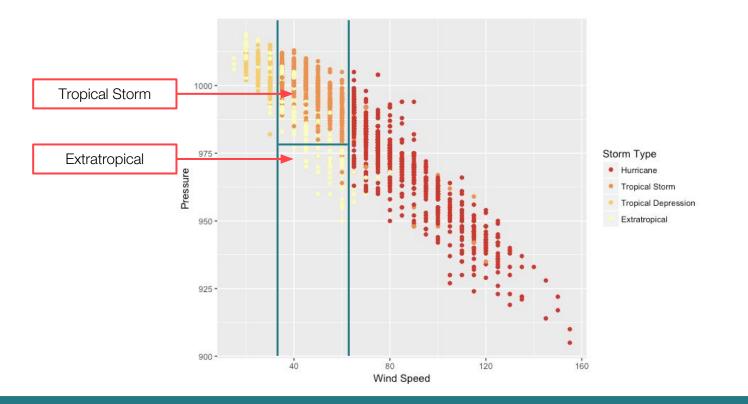
NASA Hurricane Data

- Storm data from the National Hurricane Center's archive of Tropical Cyclone Reports (1995-2005).
- Hurricanes, tropical storms, tropical depressions, and extratropical storms were tracked through the Atlantic Ocean, Caribbean Sea and Gulf of Mexico.

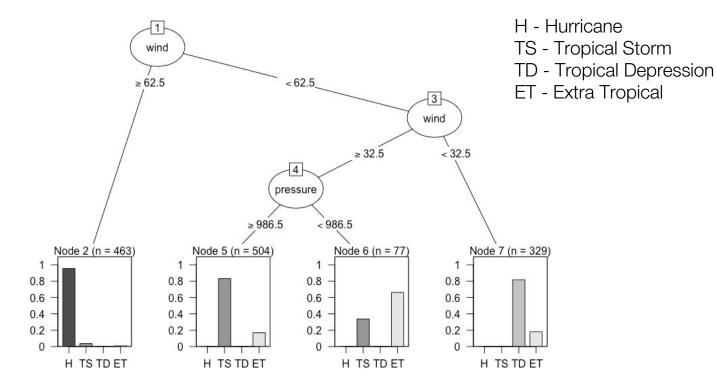








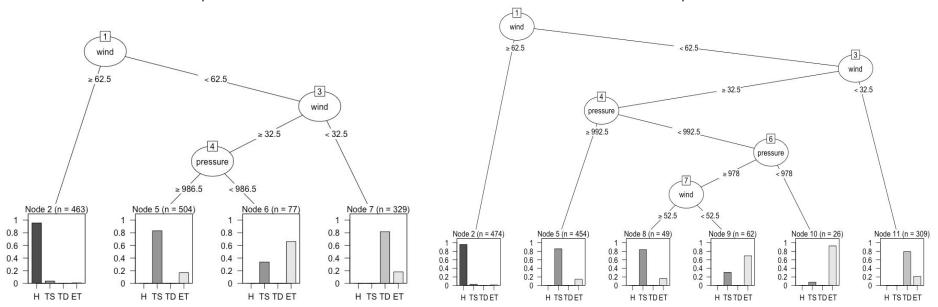
Decision Tree



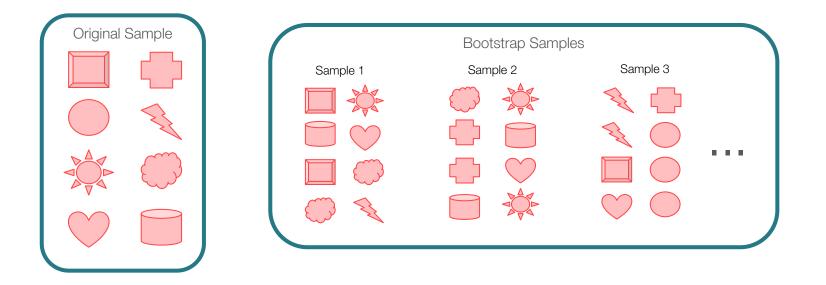
Problem: Decision trees are not very robust

Sample 1

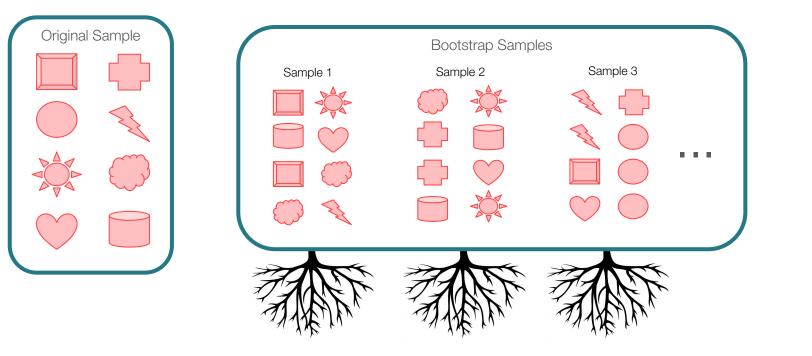
Sample 2



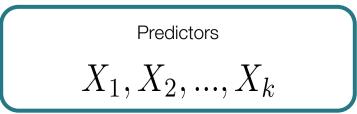
Bagging



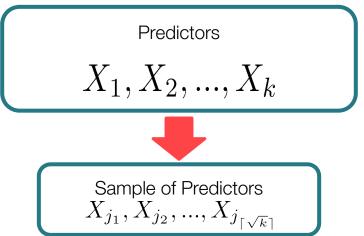
Bagging



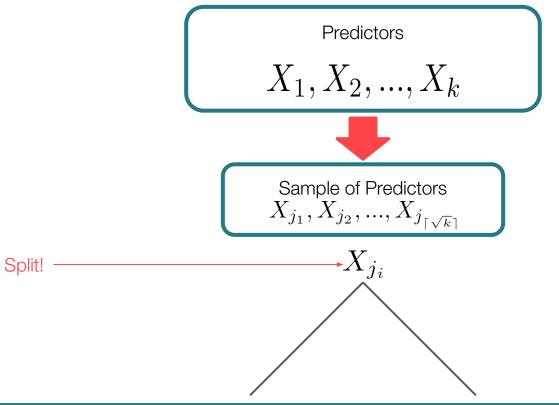
Growing a forest

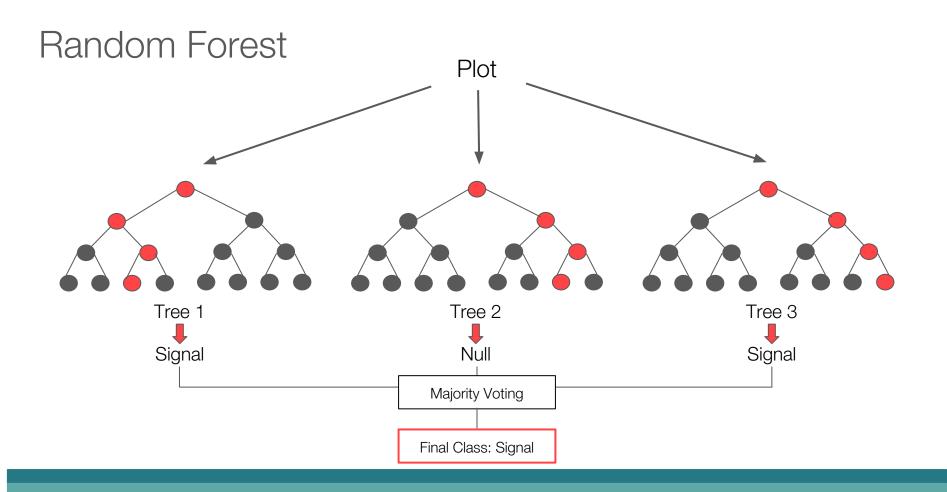


Growing a forest



Growing a forest





Back to hurricane data...

Accuracy of decision tree:

89%

Accuracy of random forest:

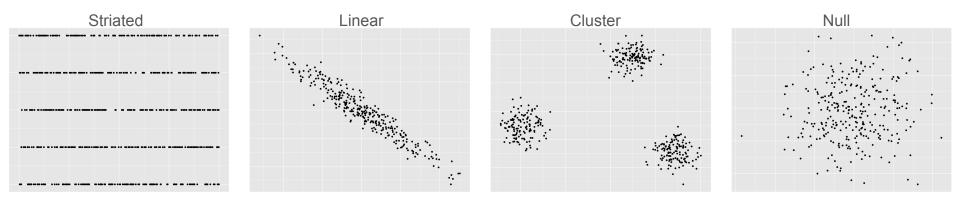
96%

Primary Family Data

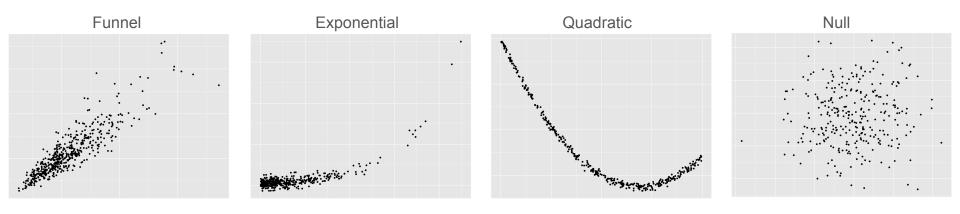
- Striated
- Linear
- Cluster
- Funnel
- Exponential
- Quadratic

- 14865 signal plots
- 14865 null plots

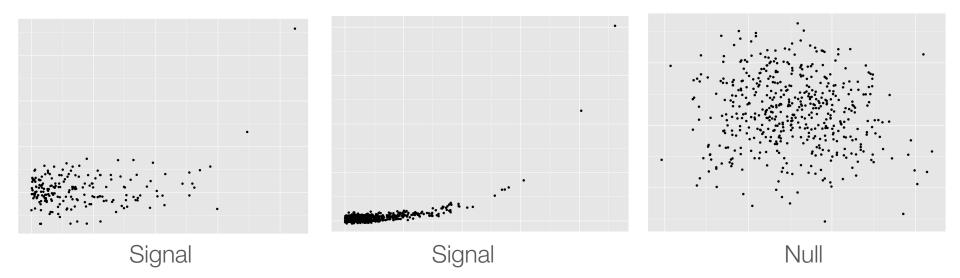
Primary Family Data



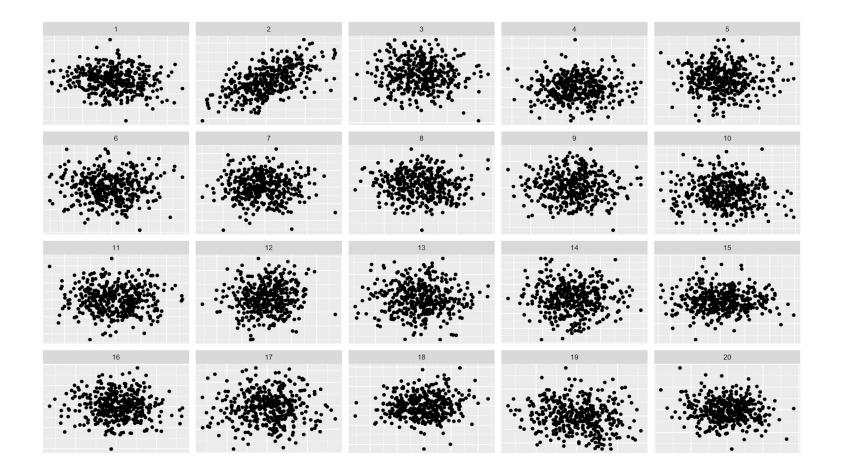
Primary Family Data

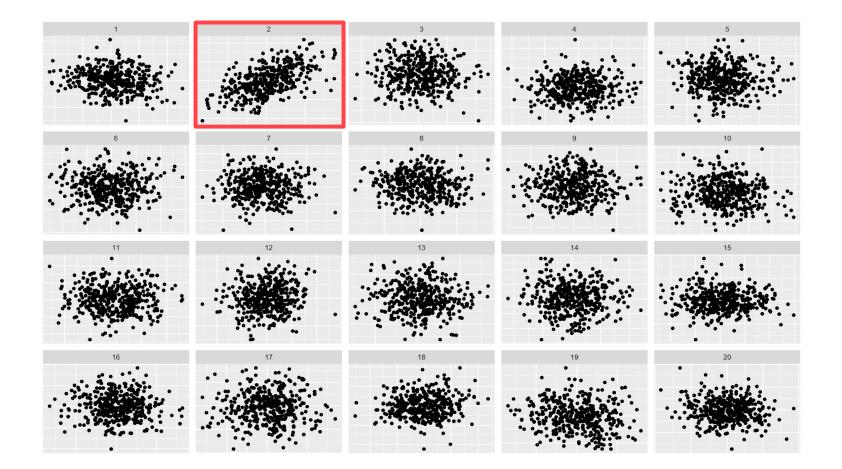


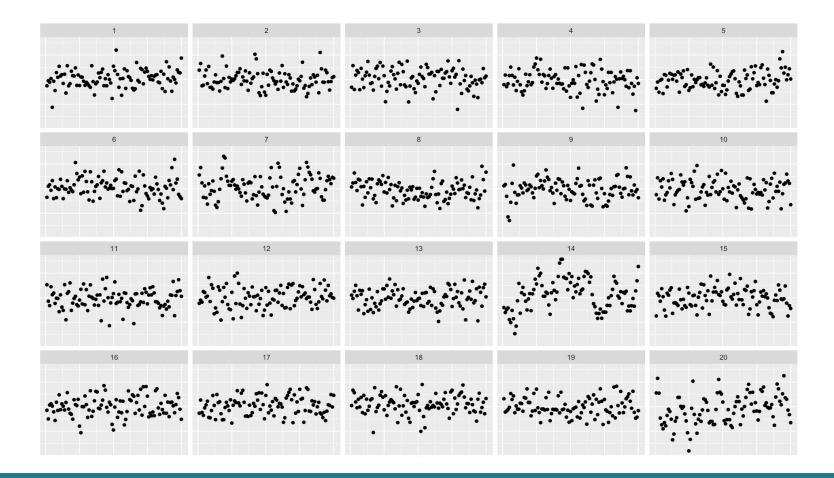
Training Data: Exponential

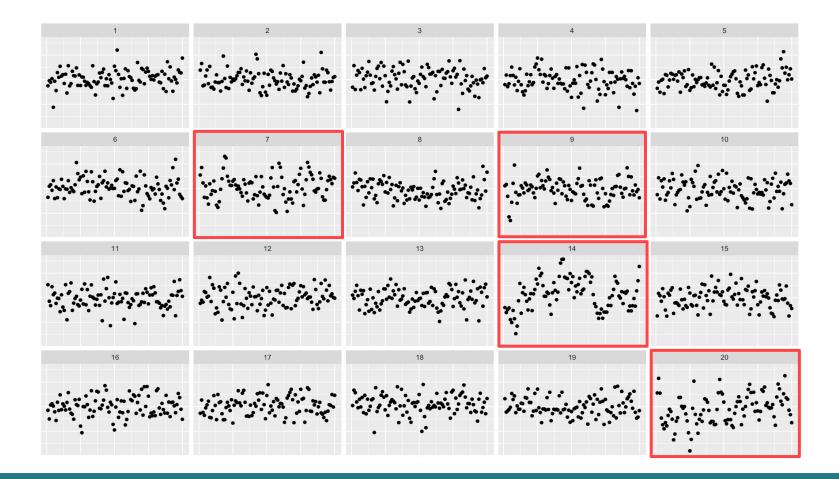


Scatterplot Lineups: Testing the Model









Lineups: Model Accuracy

One Signal Plot	Mahalanobis Accuracy	Random Forest Accuracy
Linear Trend	.857	.992
Primary Family	.952	.972
Unknown Signal Plots		
Linear Trend	.628 $(.372)$.932 $(.053)$
Primary Family	.722 (.278)	.979 (.030)
Lineups Per Dataset	1000	

Note: Rate of false positives is given in parentheses

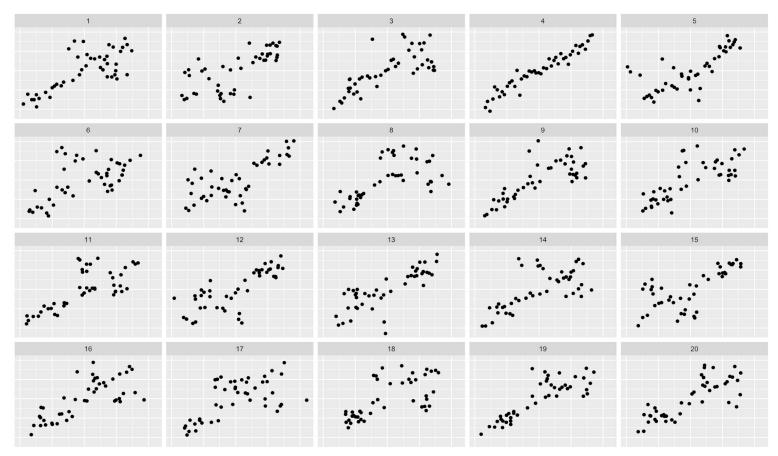
ISU Data

Lineup perception study from Iowa State

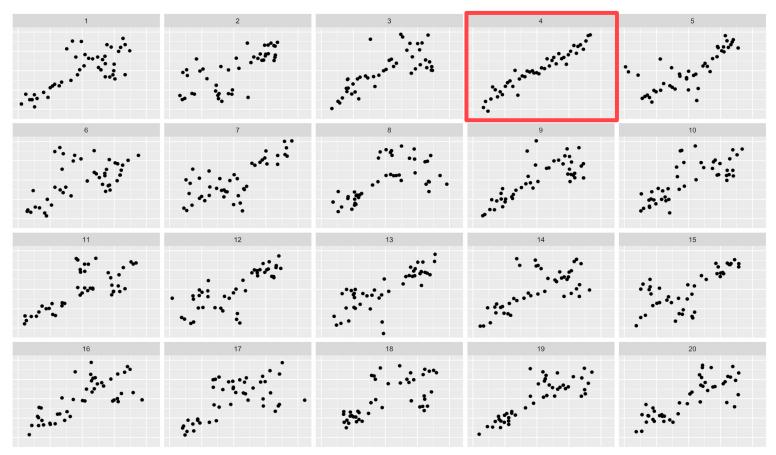
Hybrid linear + cluster plots

- 20 One-Signal Lineups
- 27 Multiple-Signal Lineups

ISU Data



ISU Data



ISU Data: Model Accuracy

Unknown Signal Plots
.537~(.433)
.926 $(.077)$
27

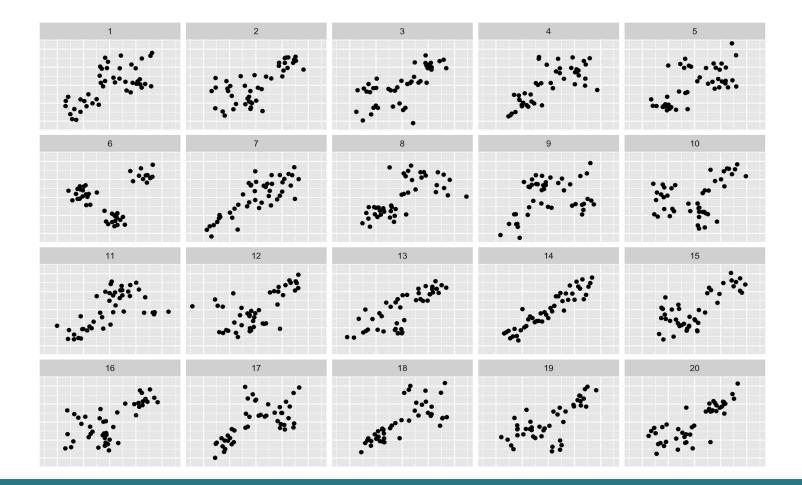
Note: Rate of false positives is given in parentheses

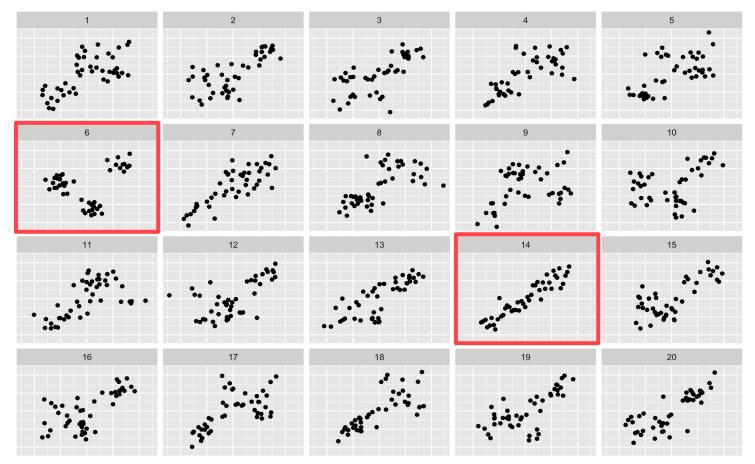
Comparison to Human Perception

Participants: 50 Carleton students

Procedure: 9 lineups shown to each person

- 6 lineups had 1 target plot
- 3 lineups had unknown number of target plots





Results

	Single Signal Plot	Unknown Signal Plots
Participant Accuracy	.805	.720 $(.105)$
Mahalanobis Accuracy	.750	.628(.291)
Random Forest Accuracy	.917	.917 (.083)

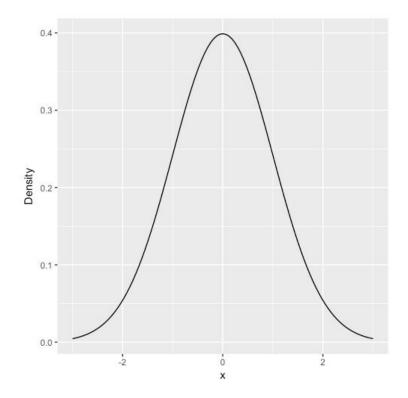
Note: Rate of false positives is given in parentheses

Lineups: Model Accuracy

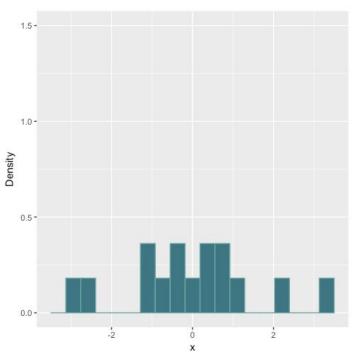
One Signal Plot	Mahalanobis Accuracy	Random Forest Accuracy
Time Series	.248	.425
QQ Plots	.210	.500
Unknown Signal Plots		
Time Series	.579 $(.421)$.566 $(.464)$
QQ Plots	.589(.411)	.761 (.248)
Lineups Per Dataset	1000	

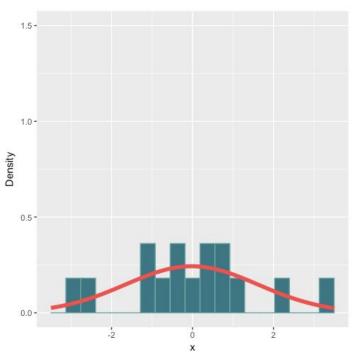
Note: Rate of false positives is given in parentheses

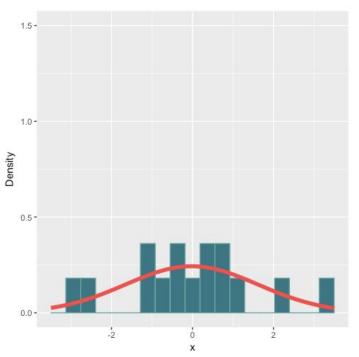
Can scagnostics help with other types of plots?



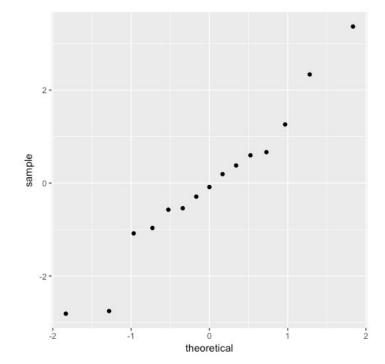
Some data



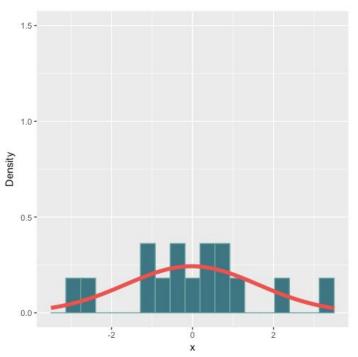




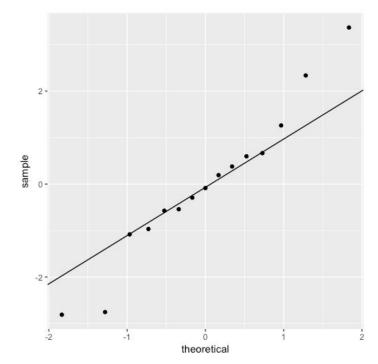
QQ Plot

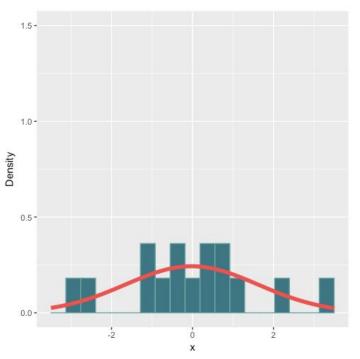


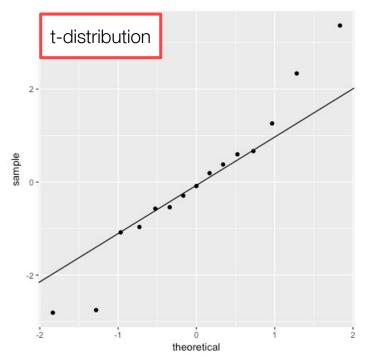
Histogram



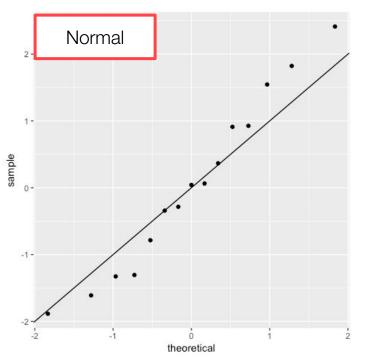
QQ Plot

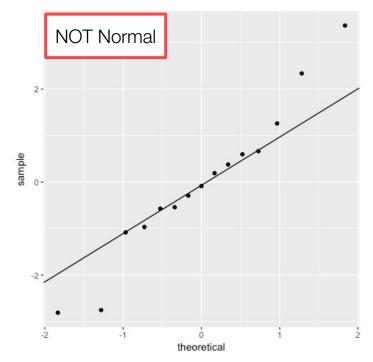


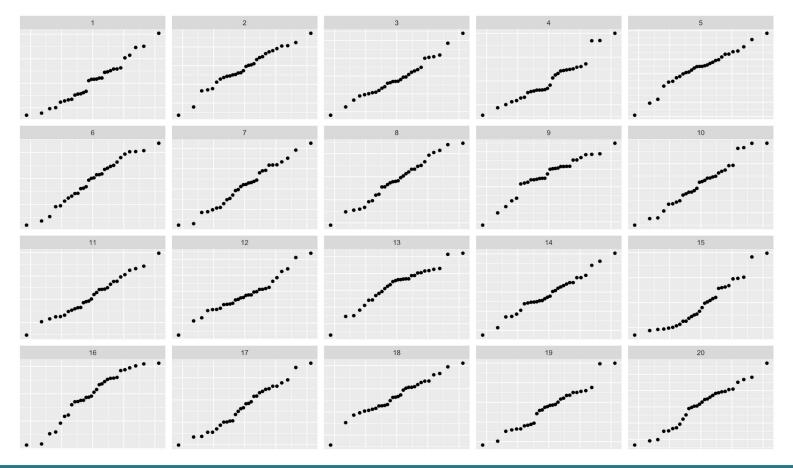


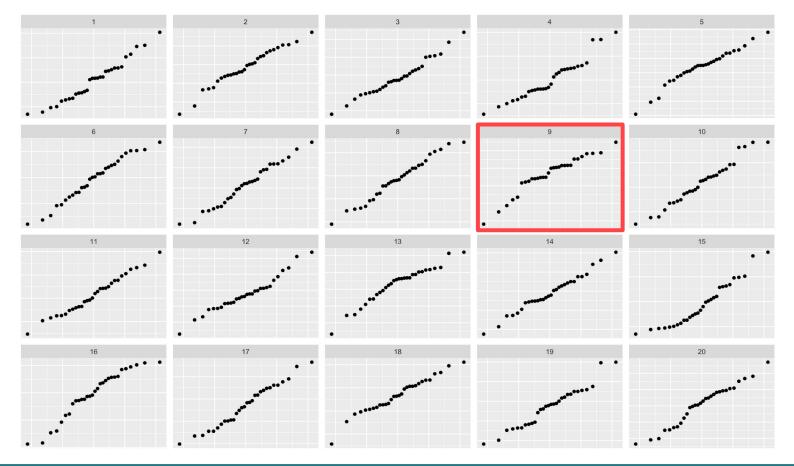


QQ Plot









Can scagnostics predict non-normality?

Can scagnostics predict non-normality?

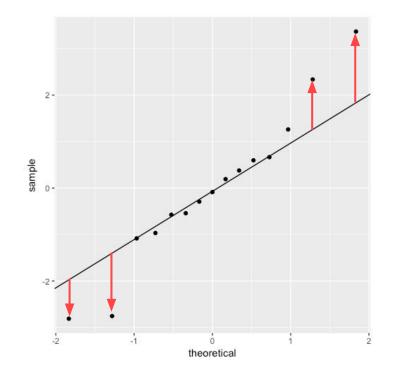
Shape

- Stringy
- Convex
- Skinny
- Clumpy
- Striated

Density and Association

- Monotonic
- Outlying
- Sparse
- Skewed

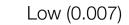
Can scagnostics predict non-normality?

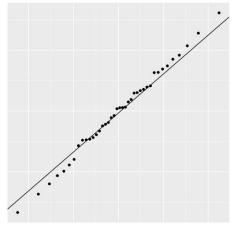


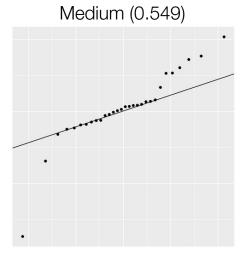
A new scagnostic

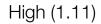
$$c_{deviation} = \frac{1}{n} \sum_{i=1}^{k} ((x_i^2 + 1)(y_i - x_i)^2)$$

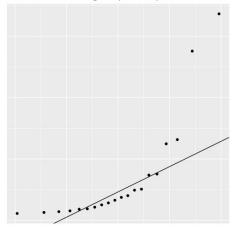
$$c_{deviation} = \frac{1}{n} \sum_{i=1}^{k} ((x_i^2 + 1)(y_i - x_i)^2)$$





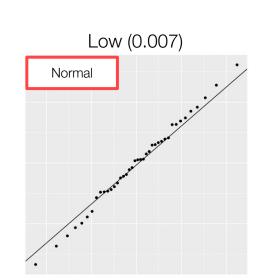


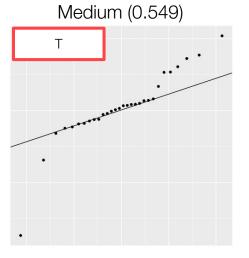




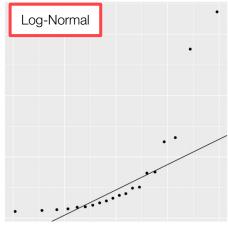
A new scagnostic

$$c_{deviation} = \frac{1}{n} \sum_{i=1}^{k} ((x_i^2 + 1)(y_i - x_i)^2)$$





High (1.11)



16,000 QQPlots were generated from a variety of distributions (normal, t, log-normal, exponential, and Chi-Squared).

16,000 QQPlots were generated from a variety of distributions (normal, t, log-normal, exponential, and Chi-Squared).

Accuracy: Anderson-Darling Normality Test 81.8%

16,000 QQPlots were generated from a variety of distributions (normal, t, log-normal, exponential, and Chi-Squared).

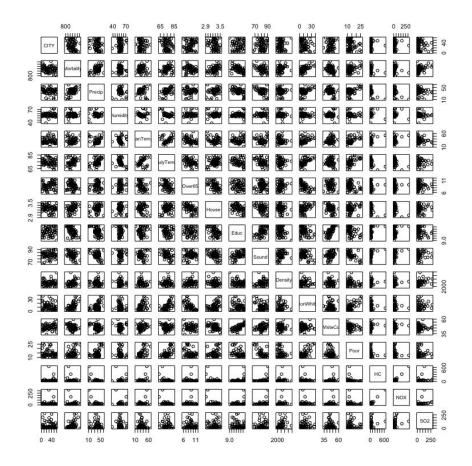
Accuracy: Anderson-Darling Normality Test	Accuracy: Model without Deviation Scagnostic
81.8%	78.6%

16,000 QQPlots were generated from a variety of distributions (normal, t, log-normal, exponential, and Chi-Squared).

Accuracy: Anderson-Darling Normality Test	Accuracy: Model without Deviation Scagnostic	Accuracy: Model with Deviation Scagnostic
81.8%	78.6%	84.0%

Conclusions

Applications



Looking at Pairwise Relationships

Our App

Choose CSV File	Begin
Browse No file selected	Choose a dataset to analyze!
V Header	
Separator O Comma	
Semicolon	
Tab	

Looking at Pairwise Relationships

Choose CS	/ File	Plot Type:
Browse	pollution2.csv	null
	Upload complete	
		Relationship
Header		logNOX vs Preci
Separator		logNOX vs JanT
o Comma		logNOX vs JulyT
Semicolo	n	logNOX vs Over
Tab		logNOX vs Hous
		logNOX vs Educ

Plot Type: exponential	funnel	linear trend	null	quadratic			
null	12 -	•	:.	•	÷ ·		•
Relationship			•	Ī			
logNOX vs Precip			•••	· ·			
logNOX vs JanTemp	Educ	•	•				
logNOX vs JulyTemp	u	·	• .		·		•
logNOX vs Over65	10 -			:		•	
logNOX vs House			• ••			•	•
logNOX vs Educ	9-				•		
logNOX vs NonWhite		6		a Over65		10	12
logNOX vs WhiteCol							

-

logNOX vs Poor

Mortality vs Humidity

Mortality vs JanTemp

Mortality vs JulyTemp

Mortality vs Over65

Mortality vs Sound

Mortality vs Density

Precip vs Humidity

Precip vs JanTemp

Precip vs JulyTemp

Precip vs Over65

Precip vs House

Procin ve Deneity

Select relationship to view!

Over65 vs Educ

Looking at Pairwise Relationships

Choose CSV File	Plot Type: exponential	funnel	linear trend	null	quadratic		
Browse pollution2.csv Upload complete	funnel	1100 -			•		
	Relationship	1000 -			·•	. :	2
V Header	logNOX vs Humidity	Mortality					•
Comma	logNOX vs Density	W 900-	. :		. · ·	• •	
Semicolon	logNOX vs NOX		:	•	• .	•	
⊖ Tab	logNOX vs SO2	800 -	•		•		
	Mortality vs NonWhite	800 -	ô		2	٠	4
	Mortality vs Poor				logN	10X	
	Mortality vs HC Mortality vs NOX						

Mortality vs SO2

Precip vs NonWhite

Humidity vs JulyTemp Humidity vs Educ Humidity vs WhiteCol JanTemp vs NonWhite JulyTemp vs HC Sound vs Poor Sound vs HC Density vs HC Density vs NOX

Select relationship to view!

-

logNOX vs Mortality

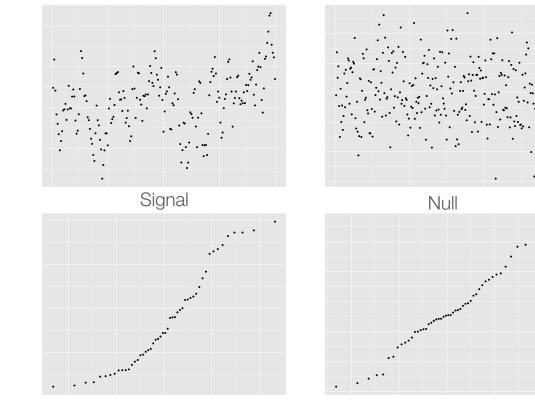
Acknowledgements

Thank you to Adam Loy, the Carleton Math & Statistics Department Faculty, our classmates, and our families.

Primary Family Models

Model	Accuracy
K-Nearest Neighbors	69.6%
Linear Discriminant Analysis	93.9%
Support Vector Machine	97.3%
Logistic Regression	97.4%
Quadratic Discriminant Analysis	98.1%
Random Forest	98.6%

QQ Plots and Time Series



Time Series

QQ Plots

