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Abstract

As statisticians, we are fundamentally interested in the relationships between variables. Per-
haps the most common tool for examining these relationships is the scatterplot. Because the
human brain has evolved to detect complex patterns, a viewer can use scatterplots to charac-
terize a wide variety of relationships between variables. But as the number of variables in a
dataset grows, it becomes infeasible for a single viewer to consider all possible scatterplots.
Furthermore, this tendency toward pattern detection can lead to the identification of relation-
ships that do not exist in reality. In this paper, we will discuss how a computer can be trained
using statistical learning methods to detect patterns in scatterplots more efficiently and effec-
tively than humans. Our research leads to the development of an automated procedure to
detect relationships between variables in large data sets and opens the door to more powerful
data analysis.
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1 Introduction

As one of the most powerful tools for visual inference, scatterplots remain an essential statis-
tical tool toward determining relationships between quantitative variables. Through inspection,
viewers can discern patterns in scatterplots that correspond to fundamental connections within
data. These types of inferences are made possible by the human viewer’s ability to essential-
ize the patterns behind the ever-changing placement of points. Furthermore, this remarkable
capability makes visual assessments of scatterplots an integral part of any comprehensive sta-
tistical analysis. As a result, when the number of variables in a data set is large, exploratory
analysis for variable relationships becomes infeasible due to the sheer quantity of possible
pairwise associations. Additionally, human inclination for pattern recognition often leads to
misattributing meaning to random variability. Thus, a model able to identify behavior in scat-
terplots could improve the efficiency of data exploration as well as open a door toward more
effective automated statistical procedures. In the pursuit of these types of applications, we first
must demonstrate that the patterns present in scatterplots can be consistently quantified and
used to differentiate pattern from random variability. Our research builds on prior attempts to
measure structure in scatterplots and examines whether these metrics provide enough infor-
mation for statistical learning procedures to identify important behavior. Finally, we compare
these statistical learning models to human perception and explore their potential to change
how we analyze scatterplots across a variety of settings.

2 Scatterplot Diagnostics

In the 1980s, John and Paul Tukey first introduced the idea of scatterplot diagnostics, aptly
named scagnostics. This set of measures is designed to characterize the structure of two-
dimensional scatterplots (Tukey, J., 1974; Tukey, J. & Tukey, P., 1985). Scagnostics were
formally defined by Wilkinson et al. in their paper, "Graph-Theoretic Scagnostics" (Wilkinson,
et al., 2005). We will begin by explaining how scagnostics are defined. In order to do this, we
first must establish the graph theory necessary to understand exactly how these measures are
constructed and calculated.

2.1 Computing Scagnostics

Geometric graphs

Geometric graphs are an essential part of how scagnostic measures quantify the behavior
present in scatterplots. By looking at geometric graphs, we are able to describe the structure
present in a scatterplot and calculate each scagnostic measure based on particular features.
We will begin by defining the features and graph theoretic objects necessary to understand
scagnostics.

A graph is a set of vertices V which are related by edges e(v, w) ∈ E, with v, w ∈ V . For
scagnostics, only geometric graphs are used. Geometric graphs are those that can be repre-
sented in a metric space S as points and lines. Additionally, scagnostics only use geometric
graphs that are undirected (all pairs (v, w) are unordered), simple (v 6= w), planar (can be rep-
resented in 2-dimensional space with no crossed edges), straight (all edges are straight lines),
and finite (V and E are finite).
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Feature measures

Certain feature measures of geometric graphs are used to calculate scagnostics:
1. Length(e) is the Euclidean distance between the vertices of an edge e.
2. Length(G) is the total length of all edges of a graph G.
3. A path is a list of vertices such that all successive pairs are an edge.
4. A path is closed if its first and last vertex are the same.
5. A polygon is the boundary of a closed path.
6. Area(P ) is the area of polygon P .
7. Perimeter(P ) is the length of the boundary of polygon P .

Convex Hull

In order to quantify the most general shape of our scatterplot, we will use the convex hull of a
graph. To understand the convex hull, we must define a convex set. A convex set of X contains
all the straight line segments connecting any pair of points in X. A convex hull of a given set
of points X is the intersection of all convex sets of X, thus making it the smallest convex set
containing X. In Euclidean space, the convex hull can be thought of as the polygon created by
wrapping the set of points X in a rubber band.

Nonconvex Hull/Alpha Hull

There are many ways to represent the non-convex shape of a set of points. For scagnostic
measures, the alpha hull is used due to its computational efficiency and status as an erosion
method. The alpha hull is a graph where points are connected by an edge when they can be
touched by an open disk D(α) containing no points. The value α represents the radius of the
disk and is chosen to be the value of the ω parameter. The ω parameter is the cutoff value
for identifying outlying edges in the minimum spanning tree (defined below). The alpha hull
can be constructed by rolling a circle of radius α around the set of points and placing edges
between points that touch the circle. It can also be generalized to n dimensional data sets by
replacing the 2 dimensional open disk by an n dimensional open ball.

Minimum Spanning Trees

A tree is any simple graph that is undirected, connected, and acyclic. For a given set of points
X, a spanning tree is any tree whose vertices are exactly the points in X. The minimum
spanning tree (MST) of X is defined as the spanning tree whose total edge weight is the
minimum for all possible spanning trees of X. In the context of geometric graphs, edge weight
is taken to be the Euclidean distance between the two vertices connected by a given edge, so
our MST will be the spanning tree with the smallest total length.

2.2 Scagnostics

With the understanding of the necessary graph feature measures, we now define each scagnos-
tic measure and how it is computed. These scagnostic measures were defined by Wilkinson,
et al. (2006).

Clumpy

The clumpy scagnostic indicates the clustering of points. This measure uses the Hartigam and
Mohanty RUNT statistic. With the single-linkage hierarchical clustering tree called a dendro-
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Figure 1: Geometric Graphs used in Computing Scagnostics

gram, this statistic uses the runt size of each node (rj), which is the smaller of the number of
leaves of each of the two subtrees joined at that node. Each rj is associated with an ej . The
runt graph Rj corresponding to each edge ej is the smaller of the two subsets of edges that
are still connected to each of the two vertices in ej after deleting edges in the MST with lengths
less than length(ej). This measure emphasizes clusters with small intracluster difference rela-
tive to their connecting edge. In this formula, j indexes edges in the MST and k indexes edges
in each runt set derived from an edge indexed by j.

cclumpy = max
j

[
1−

max
k

[
length(ek)

]
length(ej)

]

Sparse

Sparseness measures whether points are confined to a small number of locations on the plane.
This happens with small numbers of points, and when plotting categorical variables. It is mea-
sured using the 90th percentile of the edge lengths of the MST. If this exceeds 1, it is capped
at 1. If points tend to be separated, then the 90th percentile of the minimum spanning tree will
be large, but as points draw closer together, q90 will decrease.

csparse = q90

Striated

The striated measure captures how smooth paths in the minimum spanning tree are. An
example of this smoothness would be found in a plot of categorical versus continuous vari-
ables (producing stripes), but it can also be found in time series, curves, and smooth algebraic
functions. To generalize, the measure is based on the number of adjacent edges (the set of
adjacent edges is V (2)) whose cosine is less than -0.75.

cstriated =
1

|V |
∑
v∈V (2)

I(cosθe(v,a)e(v,b) < −.75)

Convex

The convex scagnostic measures how well the convex hull captures the shape of the points in
the scatterplot. It is calculated using the ratio of the area of the alpha hull to the area of the
convex hull.

cconvex =
area(A)

area(H)
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Skinny

The skinny scagnostic is a normalized measure of the ratio of the area to the perimeter of the
alpha hull. Normalization ensures a circle earns a value of 0, a square a value of 0.012 and a
skinny polygon near 1.

cskinny = 1−
√

4πarea(A)

perimeter(A)

Stringy

A stringy plot is a skinny plot with no branches. This scagnostic uses the vertices of the
minimum spanning tree. It compares the number of degree 2 vertices to the total number of
vertices minus degree 1 vertices. Thus, if the minimum spanning tree consists of mostly one
straight path or diameter with few branches, then most vertices will be of degree 2, creating a
high stringy value. If the plot does not have a clear path as part of its minimum spanning tree,
then it will have many branches, and most vertices will have degrees greater than two, so the
stringy value will be low. If V are the vertices of the MST, then our stringy scagnostic is defined
as follows:

cstringy =
|V (2)|

|V | − |V (1)|

Monotonic

In order to measure the monotonicity of a set of points, the squared Spearman correlation
coefficient is used. The Spearman correlation coefficient is the Pearson correlation on the
ranks of the x and y coordinates. As a result, the Spearman correlation will be high when
points have similar rank for the x and y coordinates and close to −1 when the coordinates
have very dissimilar rank. In order to capture both positive and negative monotonic behavior,
we take the square of this correlation as our measure of monotonicity.

cmonotonic = rspearman
2

Outlying

The outlying scagnostic is a measure of the proportion of overall edge length that is due to
the presence of long edges connected to leafs, or points of single degree, in the minimum
spanning tree. Large values for this scagnostic measure indicate that the relatively few edges
with lengths that are significantly longer than most other edges contribute a substantial portion
to the overall length of the minimum spanning tree. Edges are defined to be outliers if the edge
weight is greater than ω, where ω is calculated by

ω = q75 + 1.5(q75 − q25)

Here, q75 and q25 are the 75th and 25th percentile of edge lengths in the minimum spanning
tree. Then, the outlying scagnostic is given as

coutlying =
length(Toutliers)

length(T )
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Skewed

The skewness of a minimum spanning tree is a measure of the extreme-value distribution of
the edge lengths. The skewed scagnostic is calculated by

cskew =
q90 − q50
q90 − q10

3 Methods: Building Our Model

To begin our analysis of scagnostics and their ability to detect patterns and differentiate scat-
terplots, we simulated data from 2-dimensional point distributions. We generated linear, clus-
tered, striated, exponential, funnel, and quadratic data for our primary family dataset. For this
dataset, we had 14865 signal plots belonging to the six distributions mentioned above, as well
as 14865 null plots generated to have no interesting underlying distribution. The initial goal
of creating these plots was to serve as a proof of concept that scagnostics could be used in
a statistical learning model to classify signal and null plots correctly. They were later used in
a lineup scenario to compare scagnostics to human perception. Using a variety of statistical
learning models, both supervised and unsupervised, we computed accuracy on both individual
plots and lineups.

3.1 Statistical Learning Algorithms

Our initial goal is essentially a classification problem: we want to train a computer to use
scagnostics to classify a plot as being either signal or null. To achieve this, we used statisti-
cal learning algorithms drawn from both unsupervised and supervised methods. Supervised
learning methods are the creation of models based on predictors and known classifications
of objects. These models relate the predictors to the classification in a way that we can use
to predict future objects’ groups. Unsupervised methods, on the other hand, form groups or
infer patterns from unlabeled data. The classifications of the training data are not given to the
unsupervised model, and thus it creates categories based on patterns we may not even know
are present.

We used only supervised methods in our proof-of-concept case, in which we classified in-
dividual plots as being signal or null. With these supervised models, we trained our models on
part of the primary family dataset mentioned previously, and tested and cross-validated on the
rest. Since our end goal was to use lineups to test human perception compared to scagnostics,
we created lineups from this data. The 2000 lineups consisted of 20 plots; half contained 19
null plots and 1 signal, and half contained an unknown number of signal plots greater than 2.
For the lineups, we used both supervised and unsupervised methods: supervised similarly to
before, and unsupervised as outlier detection. We wanted to see if an outlying scagnostics
value as compared to the rest of the plots in the lineup would likely mean that a plot or multiple
plots were signal. We tested a variety of models which are explained below, and compared
them all to human perception.

3.1.1 Supervised Learning

Logistic Regression

Logistic regression is used when the response variable is categorical and there are only two
responses. The outcome can be predicted using one or more explanatory variables X. For
example, if detecting a signal plot from a field of nulls, the dependent variable Y is signal (1 for
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signal, 0 for noise), and the explanatory variables are the nine scagnostics. We can model the
logit of p(X) linearly as

log
p(X)

1− p(X)
= β0 + β1X

Then, the odds of the response Y = 1 is

p(X)

1− p(X)
= eβ0+β1X

A high odds indicates a high likelihood of being a success. Thus, probability of the response
Y = 1 given all explanatory variables X is given by the logistic function

p(X) =
eβ0+β1X

1 + eβ0+β1X

The estimation of β̂0 and β̂1 is carried out by maximizing the likelihood function:

l(β0, β1) =
∏
i:yi=1

p(xi)
∏

i′:yi′=0

(1− p(xi′))

Logistic regression can fail if there is perfect separation in some models if the probability of
the event occurring is 1 (p(X) = 1). There is not a closed form for the maximum likelihood
estimates of the β̂s, but with perfect separation, they cannot be calculated numerically since
the likelihood approaches infinity and the estimates of β̂s get very large. We can also see that
in this case, the odds can’t be calculated since it involves a division by 0; this makes sense as
likelihood of a success approaches infinity if the probability of success is 1. We encountered
this problem when we tested our model on some of our individual distributions that measures
very high on a single scagnostic, namely striated and linear. However, we still were able to use
logistic regression in our combined primary family dataset and lineup cases.

K-Nearest Neighbors

K-nearest neighbors is a classification method that classifies a new data point as being the
same class as majority of its k nearest neighbors. We used Euclidean distance to determine
the distances between points in our model, and tried values of k ranging from 1 to 25. For each
model, the value of k that maximized classification accuracy was chosen.

Random Forest

A random forest model is one of the more flexible statistical learning approaches because it
can be used for quantitative or categorical response variables as well as any form of explana-
tory variable. At the base of every random forest is the decision tree algorithm. A decision
tree produces a series of binary splits based on the predictor set in order to divide the data
into homogeneous subsets. In order to determine a split, the algorithm considers all possible
splits of each predictor and chooses the split that results in the largest possible drop in node
impurity. Node impurity is typically measured using either the Gini impurity or total entropy–two
numerically similar measures of total variance across all classes. Our random forest models
were constructing based on Gini impurity, which is a measure of the likelihood of a randomly
chosen element within a subset being mislabeled if its labelled according to the distribution of
labels within that subset. This splitting procedure is then repeated for the two resulting subsets
and the subset whose maximal split produces the biggest drop in impurity is split. This process
repeats until a stopping criteria is met. The predicted class of an observation is generally the
majority class of the terminal node in which it falls.
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While decision trees offer an intuitive way of classifying observations, they are not very ro-
bust, which makes them prone to overfitting. In order to combat this disadvantage, random
forests use many decision trees and aggregate their results. In order to avoid overfitting, ran-
dom forests begin by drawing a bootstrap sample to use as a training set. Then, a random
subset of the overall predictor set is considered at each split in order to decorrelate the trees.
Each tree with a strict stopping criteria, so that there are many splits in each tree giving each
low bias and high variance. This process is repeated for potentially hundreds of trees, and the
accuracy of the model is determined by predicting an observation using the trees trained on
bootstrap samples that did not include that observation. The final prediction is made by receiv-
ing a prediction from each individual tree and taking the majority prediction for that observation.

Linear Discriminant Analysis

Logistic regression can be effective when modeling data into two response classes that are not
well separated. However, if we are concerned with data that can be sorted into more than two
classes or classes that are well separated, linear discriminant analysis proves more robust.
Linear discriminant analysis (LDA) allows us to model the probability that a given observation
belongs to a particular response class indirectly by first modeling the distribution of predictors
for each response class individually.

LDA assumes that our data X = (X1, X2, . . . , Xp) are drawn from a multivariate normal
distribution X ∼ N(µk,Σ) where µk = E(X|Y = k) is the class-specific mean vector and
Σ = Cov(X) is a covariance matrix shared by all classes. If we denote K to be the set of all
classes, our classification function for an observation X = x is given by:

δ(x) = max
k∈K

[
xTΣ−1µk −

1

2
µTk Σ−1µk + log πk

]
where πk is the prior probability that the observation X = x belongs to the kth response class.
Often this prior is taken to be the proportion of training observations that belong to the kth class.
It is important to note that the LDA classifier is trying to approximate the Bayesian classifier,
which would give us the lowest total error rate out of all classifiers, assuming that our initial
assumption of multivariate linear data holds. One key element of this assumption is that all
classes follow the same covariance matrix. However, this may not always be the case.

Quadratic Discriminant Analysis

We can relax this assumption of a common covariance matrix by using quadratic discriminant
analysis (QDA). Now, we assume that observations belonging to a given class k are drawn from
a multivariate normal distribution X ∼ N(µk,Σk) where both the mean vector and covariance
matrix are class-specific. For a given observation X = x, this gives us the classification
function

δ(x) = max
k∈K

[
− 1

2
(x− µk)TΣ−1k (x− µk)−

1

2
log |Σk|+ log πk

]
where πk is the prior density for response class k.

The main distinction between LDA and QDA is in the bias-variance trade-off. LDA assumes a
shared covariance across all classes, making it less flexible as a classifier. This in turn leads
to a decreased variance as compared to QDA, but may suffer from increased bias should the
assumption of a common covariance matrix be wrong. Both methods of classification were
used during the analysis of our simulated data, which will be discussed later.
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3.1.2 Unsupervised Learning

We used unsupervised learning methods specifically in our lineup detection. We made this
decision because unsupervised methods more closely mimic how we as humans approach
a lineup problem: we go by visual patterns to determine which plot is different from the rest,
rather than using a statistical model based on scagnostic values or previous experience with
plots. Both unsupervised methods were used for outlier detection and are types of distance
metrics.

Euclidean Distance

The first unsupervised outlier detection method we used was Euclidean distance. We deter-
mined the 9-dimensional Euclidean distance for each lineup plot relative to both the mean and
median of the other 19 plots, and selected that which had the greatest distance to be our
predicted signal plot. In the case of multiple signal plots, we told ranked the distances from
greatest to smallest. In this case, we told the model how many signal plots there were (n)
and just chose the top n distances to be our predicted signal plots. If we have coordinates
−→x = (x1, x2, ..., xn) and −→y = (y1, y2, ..., yn), then the distance from −→x to −→y or −→y to −→x is

d(−→x ,−→y ) = d(−→y ,−→x ) =

√√√√ n∑
i=1

(xi − yi)2

Mahalanobis Distance

However, using Euclidean distance, we did not take into account correlation between our
scagnostic values. This correlation exists since some use the same length or quantile mea-
sures as others. Mahalanobis distance was our solution to this problem: it still uses distance to
determine the outlier plot(s) relative to the rest, but weights distances based on the correlation
among scagnostic values.

The Mahalanobis distance of an observation −→x = (x1, x2, x3, ..., xN )T from a set of obser-
vations with mean −→µ = (µ1, µ2, µ3, ..., µN )T and covariance matrix S is defined as

DM (−→x ) =
√

(−→x −−→µ )TS−1(−→x −−→µ ).

4 Results

Before we could begin comparing our statistical learning algorithms to human perception, we
first needed to ensure that our scagnostic measures could indeed be used to train a model to
detect patterns. To test this, we fit our algorithms on a set of training data for each of our six
primary family distributions, as well as on the primary family dataset as a whole, and tested
the prediction accuracy of our statistical learning methods on a test subset of the data. This
process used a 10-fold cross-validation, and accuracies are given in Table 1.

We can see from Table 1 that nearly all of our statistical learning algorithms managed a high
degree of accuracy across all distributions of our simulated data, as well as when the individ-
ual distributions were combined into the primary family. Now that we have confirmed the ability
to detect patterns based solely on the criteria of our nine scagnostics, we can move toward
comparing our statistical models to human perception.
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Table 1: Model Accuracies

Logistic LDA QDA K-Nearest Neighbors Random Forest

Linear .958 .854 .946 1.00 .956
Cluster .998 .987 .998 .761 .997
Striated .995 .976 .986 1.00 .993
Funnel .983 .855 .972 .98 .977
Exponential 1.00 .975 .989 1.00 1.00
Quadratic .999 .989 .995 1.00 .998
Primary Family .974 .939 .981 .696 .986

From our initial results, we concluded that machine learning methods armed with scagnostics
can be used to determine signal from null not only when trained on individual distributions, but
also when trained on our joint-distribution primary family dataset which included plots drawn
from linear, cluster, striated, funnel, exponential and quadratic distributions. While all machine
learning algorithms performed relatively well, we can see that when trained on our primary
family dataset, k-nearest neighbors performed substantially worse than our other methods.
Further, random forest performed the best (98.6% accuracy), followed by quadratic discrimi-
nant analysis (98.1%), logistic regression (97.4%), and linear discriminant analysis (93.9%).

4.1 Lineups

In order to make a valid comparison between human perception and our statistical learning
methods, we require a task that is analogous in both domains. To do this, we employed a
common mechanism in visual inference research: the lineup. A scatterplot lineup is a 4-row,
5-column grid of 20 scatterplots in which the object is to identify one or more target scatterplots
from a set of decoys. For our purposes, these target scatterplots will demonstrate a pattern
while the decoys will be our null plots.

For this research, we distinguished between two main categories of lineups. One-signal lineups
used only one target plot and 19 decoys, whereas unknown-signal lineups used multiple target
scatterplots. The number of target scatterplots in the unknown condition was not provided to
our statistical models, allowing them to identify any number of scatterplots as potential tar-
gets. All of our statistical learning methods were tested on 1000 one-signal lineups and 1000
unknown-signal lineups for both linear trend data and our combined primary family dataset.
These accuracies are given in Table 2. Our supervised learning methods were trained using
the full, original dataset, either linear or primary family, that excluded the scatterplots chosen
for the lineup. The lineup scatterplots then served as the test data for which model predictions
were determined. For these lineups, we also used two unsupervised learning methods, Eu-
clidean distance and Mahalanobis distance.

In Table 2, accuracies for the one-signal condition are the proportion of lineups in which the cor-
rect signal plot was identified. In the unknown-signal plot condition, accuracy is the percentage
of target signal plots that were identified. The number in parentheses for the unknown-signal
accuracies is the rate of false positives, which is calculated as the percentage of plots identi-
fied by the model that were not correct signal plots. Since are models were not given the total
number of signal plots to identify, thereby allowing any number of chosen signal plots, accuracy
and rate of false positives are not necessarily inverse. These two values are inverses in the
one-signal condition, so the rate of false positives is omitted here.
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Figure 2: Example of lineup generated from linear trend data; signal plot is number
√

9− 1.

Table 2: Lineup Accuracies

One-Signal Unknown-Signal

Linear Trend Primary Family Linear Trend Primary Family

Logistic Regression .936 .975 .927 (.033) .962 (.022)
LDA .924 .941 .705 (.000) .864 (.026)
QDA .912 .965 .926 (.059) .972 (.037)
K-Nearest Neighbors .959 .952 .898 (.027) .953 (.018)
Random Forest .992 .989 .932 (.053) .979 (.030)
Euclidean Distance .518 .774 .665 (.335) .819 (.181)
Mahalanobis Distance .857 .956 .628 (.372) .722 (.278)

Note: Rates of false positives are given in parentheses

For lineups with a single signal plot, we found that random forest had the highest accuracy
(99.2% for linear trends and 98.9% for our primary family data), while Euclidean distance had
the lowest accuracy (51.8% for linear and 77.4% for primary family). For our lineups with mul-
tiple signal plots, again, random forest performed best (93.2% for linear and 97.9% for primary
family), but in this case, Mahalanobis distance was the least accurate method (62.8% for linear
and 72.2% for primary family); this model also had the highest false positive rates (37.2% for
linear and 27.8% for primary family). Though we had a few poor performances, the majority
of our models gave accuracies over 90% for the one-signal plots, and over 70% for multiple
signal plots (along with false positive rates under 6%) from our primary family and linear data.

These results were very promising; however, it is worth noting here that although Table 2
demonstrates a strikingly high degree of accuracy for our statistical learning methods, they
may not be entirely accurate. These lineups were generated from our simulated data, which
were constructed for the sole purpose of evaluating the ability of scagnostics to detect patterns

11



in scatterplots. It may be the case that these plots favor differentiation based on scagnostics,
which would instigate bias in our lineup results.

4.2 VPH Data

In order to account for the potential bias in our simulated data, we sought out a set of lineups
from previous perception research that was not focused on machine learning. We borrowed a
series of 47 lineups from a lineup perception study (VanderPlas & Hoffman, 2017). There were
20 one-signal lineups and 27 two-signal lineups in the set. Each scatterplot was generated
from a hybrid linear-cluster distribution. Signal plots were constructed to be either completely
linear or cluster, as null plots were some mixture of the two. We will refer to these lineups as
our "VPH Data," named after the authors of the study from which we borrowed them.

Our statistical learning algorithms were fit to this new data using the same procedure as before.
Table 3 shows the model accuracies for these lineups.

Figure 3: Example of VPH-generated lineup. In this lineup there is a single signal plot, number
23 − 4.

Again, we find that our most of our models managed a relatively high degree of accuracy with
random forest again out-performing all of the other predictive methods (Table 3). Across the
board, however, we notice a slight drop in accuracies for the unknown-signal condition, with
most algorithms returning accuracies around 70-85%. Logistic regression and random forest
both had 100% accuracy on the one signal lineups; all other models - except Mahalanobis
with 60% - were above 90% correct. In the unknown signal lineups, k-nearest neighbors and
random forest did best, with 87% and 92.6% accuracy, respectively. Again, all other models
except Mahalanobis (53.7%) did well and were above 70% accurate. Overall, we showed that
both supervised and unsupervised models using scagnostics could very effectively pick out
both single and multiple signal plots from a field of nulls.

12



Figure 4: Example of VPH-generated lineup. In this lineup there is a multiple signal plots:
numbers 6×2

4 and 30
2 − 3.

Table 3: VPH Lineup Accuracies

One-Signal Unknown-Signal

Logistic Regression 1.000 .722 (.278)
LDA .900 .704 (.296)
QDA .950 .767 (.233)
K-Nearest Neighbors .900 .870 (.130)
Random Forest 1.000 .926 (.074)
Euclidean Distance .900 .852 (.148)
Mahalanobis Distance .600 .537 (.463)

Note: Rate of false positives is given in parentheses

On the whole, it appears that our statistical learning methods are able to effectively use
scagnostics to make predictions regarding the presence of patterns in scatterplots. Our next
step is to compare how these algorithms perform relative to human perception.

4.3 Human Perception Experiment

In order to compare our machine learning models to perception of patterns in humans, we
conducted a study at our college.

4.3.1 Participants

Participants were 50 college students between 18 and 22 years of age. Recruitment was
managed primarily through email to a list of students interested in mathematics and statistics,
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although some face-to-face recruitment also occurred. No controls were placed on familiarity
with statistics, although by nature of the population emailed it can be assumed that all partic-
ipants had some mathematical background. All participants were compensated for their time
with food.

4.3.2 Materials

18 lineups were generated using either linear trend scatterplots or the VPH scatterplots. 12
lineups were constructed to be one-signal lineups, and 6 were unknown-signal lineups. 2 ex-
periment conditions were created using 6 one-signal and 3 unknown-signal lineups each.

The experiment was run using the Qualtrics survey platform. All one-signal lineups were pre-
sented first in a random order, then all unknown-signal lineups were presented in a random
order. All participants completed this study in a controlled laboratory environment. This was
done in order to ensure that all lineups were displayed on the same computers using the same
resolution.

4.3.3 Procedure

All participants were informed of what their participation would entail prior to beginning the
survey, and consent was acquired. Before beginning the study, participants were given a
practice lineup in order to familiarize themselves with the task. 6 one-signal lineups were then
presented, one at a time, and responses were recorded. For these lineups, participants were
informed: "For the following lineups, there may be multiple plots that are different from the
majority. This means that there could only be 1 different plot, or there could be several plots
that are different from the others. Please select all plots that you believe are different from
the others." After completing all 9 lineups, participants were thanked for their time and were
provided with food as compensation.

4.3.4 Results

Our seven statistical learning algorithms were fit to the 18 lineups used in this study using the
same procedure as before. Prediction accuracies are given in Table 4.

Table 4: Experiment Lineup Accuracies

One-Signal Unknown-Signal

Logistic Regression .833 .883 (.150)
LDA .833 .917 (.139)
QDA .833 .767 (.189)
K-Nearest Neighbors .917 .917 (.309)
Random Forest .917 .917 (.083)
Euclidean Distance .833 .878 (.122)
Mahalanobis Distance .750 .628 (.291)
Participant Accuracy .805 .720 (.105)

Note: Rate of false positives is given in parentheses

Our participants had an accuracy of 80.5% with the single signal plots. This was worse than
each of our models except Mahalanobis distance. With multiple-signal lineups, our partici-
pants had an accuracy of 72%, which was again worse than every model except Mahalanobis.
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However, our participants did have a lower false positive rate than every model except random
forest (which also happened to have the highest accuracy, 91.7%). Thus, while our participants
tended to perform worse than the models in terms of number of correct plots selected, they
were also more conservative in picking plots overall: both the model and the participants were
allowed to pick as many plots as they thought were signal, but our human participants seemed
to pick fewer. Perhaps there is a cutoff for the human brain in terms of being able to detect a
variety of patterns in plots compared to a majority.

4.4 QQ plots

Although our primary concern was determining whether scagnostics could aid in detecting
relationships between variables in a traditional scatterplot setting, we also considered how
scagnostics might help in differentiating between other types of plots. Specifically, we explored
the effectiveness of our scagnostic measures at assessing normality in QQ plots. In order to
do this, we generated 16,000 QQ plots from a variety of normal and non-normal distributions.
Half of our data came from a normal distribution, and the remaining plots were created from
data simulated from t-distributions, exponential distributions, log-normal distributions, and Chi-
squared distributions. Sample sizes and parameter values were varied in order to generate
a variety of non-normal behavior. Then, scagnostic values were calculated for each plot as
predictors for non-normality.

As a baseline, the data for each of our 16,000 QQ plots were classified using the Anderson-
Darling normality test. We found that this traditional normality test accurately identified 81.8%
of our simulated data as either normal or non-normal. We then tested the effectiveness of our
scagnostic measures using 10-fold cross validation for a variety of statistical learning models
fit to our simulated data. The top cross-validated accuracy came from our random forest model
with 78.6% accuracy.

Although our nine scagnostic values were developed to detect patterns in scatterplots, they
were not designed to specifically quantify the behavior in QQ plots. QQ plots are entirely
monotonic and as a viewer, we understand that perfect adherence to the normal distribution
should result in all points falling along the line y = x (for standardized data). Therefore, we de-
cided that we may need an additional scagnostic in order to mirror the visual cues that a viewer
uses to identify non-normality. In order to do this, we attempted to quantify deviations from this
theoretical line by taking an average of the vertical distances between the points on our QQ
plot and the line y = x. To justify this comparison, we standardized our data by subtracting
by the mean and dividing by the standard deviation. Therefore, under the null hypothesis that
our original data is normal, our transformed data should fall under the standard normal dis-
tribution. Furthermore, we experimented with placing a larger penalty for deviations from our
theoretical line in the tails of our plot in order to potentially detect some of the behavior visible in
t-distributions with low degrees of freedom. We tested a variety of different weighting functions
in order to empirically determine how much to penalize extreme values. Ultimately, based on
accuracy within our simulated data, we arrived at our "deviation" scagnostic shown below.

cdeviation =
1

n

k∑
i=1

((x2i + 1)(yi − xi)2)

Armed with this new scagnostic, we refit our models and tested their accuracy on our simulated
data. Ultimately, after including our deviation scagnostic, we found that our top cross-validated
accuracy was 84.0% coming again from our random forest model. This performance was
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not only an improvement over our original model, but also provided more accuracy than the
Anderson-Darling test alone. There is still substantial room for improvement, but it appears that
developing further measures to quantify the visual cues available through QQ plots could aid
in identifying non-normality. Overall, the effectiveness of this model illustrates how scagnostics
and statistical learning can be used in a variety of settings as well as the potential to develop
specialized scagnostics to detect particular behavior in specific settings.

5 Discussion

Unsupervised vs. Supervised Models

An important question in our research is whether supervised or unsupervised methods are
preferred for pattern detection in scatterplots. Overall, we found that supervised methods led
to not only higher accuracies, but in the multiple-signal lineups also lower false positive rates.
The initial lineup accuracies (Table 2) demonstrate a clear disconnect between the pattern
detection capabilities of supervised and unsupervised learning methods. In the one-signal
condition, the Euclidean distance predictions vastly under-perform all of our other learning
methods. Mahalanobis distance, however, manages to return similar accuracies to the five su-
pervised algorithms. When we look at the unknown-signal condition, however, both Euclidean
and Mahalanobis distance fail to measure comparably with our supervised methods. With the
VPH lineup, the Mahalanobis distance predictions are far less accurate than the other mea-
sures, with Euclidean predicting comparably to the supervised methods. When looking at the
human perception experiment data, we see again that Mahalanobis performs worse than the
other metrics, with Euclidean performing like the supervised methods once again. Thus, in our
three different lineup comparison studies, we see that supervised methods are far more con-
sistently accurate than Euclidean and Mahalanobis distance. Therefore, while we hoped that
unsupervised methods could reveal unknown structure within the data, and use this structure
to determine the signal plots with high accuracy, it appears that supervised methods are more
appropriate for our research interests.

Limitations

The topic of supervised versus unsupervised brings us to one of our main limitations: the use
of Euclidean and Mahalanobis distance as our only unsupervised methods. These are both
examples of outlier detection. Further research could try to use different unsupervised meth-
ods. For example, we could potentially use unsupervised forms of clustering in order to detect
more general patterns in how scagnostics differentiate plots - these methods would not give
us a signal or null classification, but they could further illuminate exactly which visual patterns
scagnostics distinguish among scatterplots.

Another limitation we faced was the scope of our study: while our models performed very
well compared to our participants, our population of volunteers was not very diverse or large.
Additionally, most of our participants had taken at least one course in statistics. Comparing
college students who have had experience with scatterplots, and thus might be using outside
information other than just pattern detection, to a more general population of people might be
a promising path to pursue if we are interested in more fully confirming that our model is more
effective and efficient than humans at detecting patterns in scatterplots.
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Applications

Considering our model’s success to detect pattern from null, we believe that our research can
be used to aid statisticians in their analysis of large data sets. Our model could be used to
both identify signal plots, flagging them for further visual and quantitative analysis, as well as
suggest which relationships between other variables may not have significant patterns and do
not warrant further examination. Moving toward this goal, we created a simple Shiny application
that when given a large dataset, can return a list of signal and null plots within a matter of
seconds, and even classify the signal plots as being one of our primary family data types.

Future Directions

While our use of scagnostics in our tested types of scatterplots proved to be very promising,
they were less helpful when it came to types of scatterplots with specific structure including QQ
plots, time series, and residual plots. Though our successful initial exploration of a potential
new scagnostic for classifying QQ plots as normal or not, we suggest that future scagnostic-
type values could potentially be of use for detecting patterns in these unique scatterplots.

6 Conclusion

Throughout the various steps of our research, we have shown that scagnostics can be used
to characterize scatterplots more effectively and efficiently than humans. First, we established
that scagnostics can be used to distinguish signal from null when trained on specific distribu-
tions. Next, we determined that computers can be trained to "see" a wide variety of distributions
as signal using scagnostics. Finally, using lineups, we found that our model performs better
than humans to detect the most dissimilar plot or plots from a series of null plots. Thus, we
believe scagnostics can be a promising tool for statisticians in the future.
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